Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 45(9-10): 794-804, 2024 May.
Article in English | MEDLINE | ID: mdl-38161244

ABSTRACT

Facial image-based kinship verification represents a burgeoning frontier within the realms of computer vision and biomedicine. Recent genome-wide association studies have underscored the heritability of human facial morphology, revealing its predictability based on genetic information. These revelations form a robust foundation for advancing facial image-based kinship verification. Despite strides in computer vision, there remains a discernible gap between the biomedical and computer vision domains. Notably, the absence of family photo datasets established through biological paternity testing methods poses a significant challenge. This study addresses this gap by introducing the biological kinship visualization dataset, encompassing 5773 individuals from 2412 families with biologically confirmed kinship. Our analysis delves into the distribution and influencing factors of facial similarity among parent-child pairs, probing the potential association between forensic short tandem repeat polymorphisms and facial similarity. Additionally, we have developed a machine learning model for facial image-based kinship verification, achieving an accuracy of 0.80 in the dataset. To facilitate further exploration, we have established an online tool and database, accessible at http://120.55.161.230:88/.


Subject(s)
Face , Humans , Face/anatomy & histology , Male , Female , Forensic Genetics/methods , Machine Learning , Genetic Association Studies/methods , Microsatellite Repeats , Genome-Wide Association Study/methods
2.
Dalton Trans ; 49(7): 2225-2233, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32003386

ABSTRACT

Transition metal phosphides have been receiving a great deal of attention as anode materials for Li-ion batteries due to their novel properties of high theoretical capacity and relatively low polarization. MoP and MoP2 nanoparticles with different crystal structures are synthesized by phosphorization in different stoichiometric proportions, using Mo nanospheres as the precursor produced by the plasma evaporation method. When used as the anode material for Li-ion batteries, the MoP2 electrode delivers a stable capacity of 676.60 mA h g-1 after 300 cycles at a current density of 0.1 A g-1 with obvious discharge/charge plateaus; however, the capacity of the hexagonal MoP electrode is 312.38 mA h g-1. The first-principles calculations illustrate that the di-phosphorus bond of MoP2 is prone to break and the distal P atoms preferentially bind with Li atoms to form Li3P during lithiation, but MoP prefers to form ternary LixMoP. The ex situ X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) of the MoP2 electrode after cycling confirm the conversion reaction for the electrochemical storage of Li-ions.

3.
ACS Nano ; 12(8): 8037-8047, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30059618

ABSTRACT

SnS2 with high theoretical capacity has been impeded from practical applications as the anode of lithium-ion (Li-ion) batteries due to its large volume expansion and fast capacity decay. A nanostructure of the SnS2 semifilled carbon nanotube (SnS2@CNT) has been realized by plasma-assisted fabrication of Sn semifilled CNT (Sn@CNT) followed by post-sulfurization. When serving as the anode of a Li-ion battery, SnS2@CNT delivers an initial discharge capacity of 1258 mAh g-1 at 0.3 A g-1. Instead of capacity fading, SnS2@CNT shows inverse capacity growth to 2733 mAh g-1 after 470 cycles. The high-resolution transmission electron microscopy images show that the void in CNTs, after cycling, is fully filled with pulverized SnS2 grains which have a shortened Li-ion diffusion path and enhanced surface area for interfacial redox reactions. In addition, the CNTs, like a pocket, confine the pulverized SnS2, maintain the electric contact and structural integrity, and thus allow the electrodes to work safely under long cyclic loadings and extreme temperature conditions.

4.
J Nanosci Nanotechnol ; 16(1): 648-53, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398502

ABSTRACT

As a newly emerging class of nanomaterials, carbon dots have increasingly attracted researchers' attention. However, their potentially adverse environmental effects are yet largely unknown. In this work, the highly luminescent carbon dots were synthesized by microwave-assisted pyrolysis of tris(hydroxymethyl)aminomethane (Tris) and citric acid. Then acute and chronic toxicities of carbon dots to Physa acuta (P. acuta), as well as their effect on reproduction, were evaluated using the as-synthesized dots as an example. The quantum yield of the as-synthesized carbon dots was up to 53.5% excited at 360 nm with the most fluorescent fraction of 82.6% after simple purification by gel column. The results showed that no acute but chronic toxicities to P. acuta exposed to different treatment concentrations of the as-synthesized carbon dots were observed with dose- dependence. In addition, the fecundity of P. acuta was promoted significantly by the carbon dots at the concentrations of 0.5 and 1.0 mg/mL, yet inhibited at the concentration of 3.0 mg/mL after 12-day exposure. Mainly distributing in the visceral mass might be responsible for the effects of the carbon dots on the survival and fecundity of P. acuta. And there was no further evidence to confirm that the carbon dots can cause malformation in developing embryos.


Subject(s)
Gastropoda/metabolism , Microwaves , Quantum Dots , Animals , Dose-Response Relationship, Drug , Quantum Dots/adverse effects , Quantum Dots/chemistry , Reproduction/drug effects
5.
Carbohydr Polym ; 113: 194-9, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25256475

ABSTRACT

In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP).


Subject(s)
Antifungal Agents/chemical synthesis , Metals, Rare Earth/chemical synthesis , Polysaccharides/chemical synthesis , Reishi , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Metals, Rare Earth/pharmacology , Methylation , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Reishi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...