Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 209(Pt 2): 252-264, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37852547

ABSTRACT

Heart failure (HF) severely impairs human health because of its high incidence and mortality. Cardiac hypertrophy is the main cause of HF, while its underlying mechanism is not fully clear. As an E3 ubiquitin ligase, Ring finger protein 13 (RNF13) plays a crucial role in many disorders, such as liver immune, neurological disease and tumorigenesis, whereas the function of RNF13 in cardiac hypertrophy remains largely unknown. In the present study, we found that the protein expression of RNF13 is up-regulated in the transverse aortic constriction (TAC)-induced murine hypertrophic hearts and phenylephrine (PE)-induced cardiomyocyte hypertrophy. Functional investigations indicated that RNF13 global knockout mice accelerates the degree of TAC-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis and heart dysfunction. On the contrary, adeno-associated virus 9 (AAV9) mediated-RNF13 overexpression mice alleviated cardiac hypertrophy. Furthermore, we demonstrated that adenoviral RNF13 attenuates the PE-induced cardiomyocyte hypertrophy and down-regulates the expression of cardiac hypertrophic markers, while the opposite results were observed in the RNF13 knockdown group. The RNA-sequence of RNF13 knockout and wild type mice showed that RNF13 deficiency activates oxidative stress after TAC surgery. In terms of the mechanism, we found that RNF13 directly interacted with p62 and promoted the activation of downstream NRF2/HO-1 signaling. Finally, we proved that p62 knockdown can reverse the effect of RNF13 in cardiac hypertrophy. In conclusion, RNF13 protects against the cardiac hypertrophy via p62-NRF2 axis.


Subject(s)
Heart Failure , NF-E2-Related Factor 2 , Animals , Mice , Cardiomegaly/metabolism , Heart Failure/pathology , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Cell Physiol ; 236(7): 5176-5192, 2021 07.
Article in English | MEDLINE | ID: mdl-33368294

ABSTRACT

TMEM173 has been reported to participate in endoplasmic reticulum stress, inflammation and immunology, all of which closely involved with cardiac hypertrophy. But its role in autophagy is not fully figured out. In our research, Tmem173 global knockout (KO) mice manifested more deteriorated hypertrophy, fibrosis, inflammatory infiltration and cardiac malfunction compared with wild type C57BL/6 mice after 6 weeks of transverse aortic constriction. And KO mice showed inhibited autophagosome degradation in myocardium observed under transmission electron microscope and in protein level. In in vitro experiments conducted in neonatal rat cardiomyocytes under phenylephrine treatment, the abundance of Tmem173 gene was negatively related to the abundance of LC3-Ⅱ and the number of red and yellow fluorescent dots, of which reflected the capacity of autophagosome degradation. These results indicated that TMEM173 might be a promoter of autophagic flux and protected against pressure overload-induced cardiac hypertrophy. It may serve as a potential therapeutic target for cardiac hypertrophy in the future.


Subject(s)
Autophagy/physiology , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Membrane Proteins/metabolism , Animals , Autophagosomes/metabolism , Cells, Cultured , Fibrosis/pathology , Fibrosis/prevention & control , Inflammation/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley
3.
Biomed Res Int ; 2020: 2616024, 2020.
Article in English | MEDLINE | ID: mdl-32461972

ABSTRACT

Oxidative damage is closely involved in the development of doxorubicin- (DOX-) induced cardiotoxicity. It has been reported that tetrandrine can prevent the development of cardiac hypertrophy by suppressing reactive oxygen species- (ROS-) dependent signaling pathways in mice. However, whether tetrandrine could attenuate DOX-related cardiotoxicity remains unclear. To explore the protective effect of tetrandrine, mice were orally given a dose of tetrandrine (50 mg/kg) for 4 days beginning one day before DOX injection. To induce acute cardiac injury, the mice were exposed to a single intraperitoneal injection of DOX (15 mg/kg). The data in our study showed that tetrandrine prevented DOX-related whole-body wasting and heart atrophy, decreased markers of cardiac injury, and improved cardiac function in mice. Moreover, tetrandrine supplementation protected the mice against oxidative damage and myocardial apoptotic death. Tetrandrine supplementation also reduced ROS production and improved cell viability after DOX exposure in vitro. We also found that tetrandrine supplementation increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and activity in vivo and in vitro. The protection of tetrandrine supplementation was blocked by Nrf2 deficiency in mice. In conclusion, our study found that tetrandrine could improve cardiac function and prevent the development of DOX-related cardiac injury through activation of Nrf2.


Subject(s)
Benzylisoquinolines/administration & dosage , Cardiomegaly/prevention & control , Heart Injuries/prevention & control , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cardiomegaly/chemically induced , Cardiotoxicity/prevention & control , Cell Survival/drug effects , Doxorubicin/adverse effects , Heart Injuries/chemically induced , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
4.
Int J Mol Med ; 45(5): 1425-1435, 2020 May.
Article in English | MEDLINE | ID: mdl-32323841

ABSTRACT

Corosolic acid (CRA) is a pentacyclic triterpenoid isolated from Lagerstroemia speciosa. The aim of the present study was to determine whether CRA reduces cardiac remodelling following myocardial infarction (MI) and to elucidate the underlying mechanisms. C57BL/6J mice were randomly divided into control (PBS­treated) or CRA­treated groups. After 14 days of pre­treatment, the mice were subjected to either sham surgery or permanent ligation of the left anterior descending artery. Following surgery, all animals were treated with PBS or CRA (10 or 20 mg/kg/day) for 4 weeks. After 4 weeks, echocardiographic, haemodynamic, gravimetric, histological and biochemical analyses were conducted. The results revealed that, upon MI, mice with CRA treatment exhibited decreased mortality rates, improved ventricular function and attenuated cardiac fibrosis compared with those in control mice. Furthermore, CRA treatment resulted in reduced oxidative stress, inflammation and apoptosis, as well as inhibited the transforming growth factor ß1/Smad signalling pathway activation in cardiac tissue. In vitro studies further indicated that inhibition of AMP­activated protein kinase α (AMPKα) reversed the protective effect of CRA. In conclusion, the study revealed that CRA attenuated MI­induced cardiac fibrosis and dysfunction through modulation of inflammation and oxidative stress associated with AMPKα.


Subject(s)
Fibrosis/drug therapy , Heart/drug effects , Myocardial Infarction/drug therapy , Triterpenes/pharmacology , Ventricular Function, Left/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cell Line , Disease Models, Animal , Echocardiography/methods , Fibrosis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Rats , Signal Transduction/drug effects , Ventricular Remodeling/drug effects
5.
J Mol Med (Berl) ; 98(5): 691-705, 2020 05.
Article in English | MEDLINE | ID: mdl-32280997

ABSTRACT

Cardiac hypertrophy is a complex pathological process, and the molecular mechanisms underlying hypertrophic remodeling have not been clearly elucidated. Leukocyte immunoglobulin-like receptor B4 (lilrb4) is an inhibitory transmembrane protein that is necessary for the regulation of various cellular signaling pathways. To investigate whether lilrb4 plays a role in cardiac hypertrophy, we performed aortic banding in lilrb4 knockout mice, lilrb4 cardiac-specific transgenic mice, and their wild-type littermates. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We found that lilrb4 was expressed both in myocardial tissue and on cultured cardiomyocytes under basal conditions, but the expression was obviously decreased in mouse hearts following aortic banding and in cardiomyocytes treated with angiotensin II. Lilrb4 disruption aggravated cardiac hypertrophy, fibrosis, and dysfunction in response to pressure overload. Conversely, the cardiac overexpression of lilrb4 led to the opposite effects. Moreover, lilrb4 overexpression inhibited angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we determined that the cardioprotective effect of lilrb4 was mediated through an interaction with SHP-2, the preservation of phosphorylated SHP-2, and the inhibition of the NF-κB pathway. In addition, SHP-2 knockdown in cardiomyocytes eliminated the inhibitory effects of lilrb4 on angiotensin II-induced hypertrophy and NF-κB activation. Our results suggest that lilrb4 protects against pathological cardiac hypertrophy via the SHP-2-dependent inhibition of the NF-κB pathway and may act as a potential therapeutic target for cardiac hypertrophy. KEY MESSAGES: Lilrb4 expression is decreased by hypertrophic stimuli. Lilrb4 protects against pathological cardiac hypertrophy. Lilrb4 interacts with SHP-2 and inhibits NF-κB pathway.


Subject(s)
Cardiomegaly/etiology , Cardiomegaly/metabolism , Disease Susceptibility , Membrane Glycoproteins/genetics , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, Immunologic/genetics , Animals , Biomarkers , Biopsy , Cardiomegaly/diagnosis , Disease Models, Animal , Echocardiography , Fluorescent Antibody Technique , Gene Expression Regulation , Hemodynamics , Immunohistochemistry , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Receptors, Immunologic/metabolism
6.
Biosci Rep ; 39(12)2019 12 20.
Article in English | MEDLINE | ID: mdl-31746323

ABSTRACT

AIM: In this work, we explored the role of corosolic acid (CRA) during pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was induced in mice by aortic banding. Four weeks post-surgery, CRA-treated mice developed blunted cardiac hypertrophy, fibrosis, and dysfunction, and showed increased LC3 II and p-AMPK expression. In line with the in vivo studies, CRA also inhibited the hypertrophic response induced by PE stimulation accompanying with increased LC3 II and p-AMPK expression. It was also found that CRA blunted cardiomyocyte hypertrophy and promoted autophagy in Angiotensin II (Ang II)-treated H9c2 cells. Moreover, to further verify whether CRA inhibits cardiac hypertrophy by the activation of autophagy, blockade of autophagy was achieved by CQ (an inhibitor of the fusion between autophagosomes and lysosomes) or 3-MA (an inhibitor of autophagosome formation). It was found that autophagy inhibition counteracts the protective effect of CRA on cardiac hypertrophy. Interestingly, AMPK knockdown with AMPKα2 siRNA-counteracted LC3 II expression increase and the hypertrophic response inhibition caused by CRA in PE-treated H9c2 cells. CONCLUSION: These results suggest that CRA may protect against cardiac hypertrophy through regulating AMPK-dependent autophagy.


Subject(s)
Autophagosomes/drug effects , Autophagy/drug effects , Cardiomegaly/drug therapy , Triterpenes/pharmacology , AMP-Activated Protein Kinase Kinases , Angiotensin II/metabolism , Animals , Autophagy/genetics , Cardiomegaly/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Mice , Microtubule-Associated Proteins/genetics , Myocytes, Cardiac/drug effects , Protein Kinases/genetics , Rats , Signal Transduction/drug effects
7.
BMC Cardiovasc Disord ; 19(1): 219, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615408

ABSTRACT

BACKGROUND: Cardiac fibrosis is a crucial aspect of cardiac remodeling that can severely affect cardiac function. Cardiac fibroblasts surely influence this process. Besides, macrophage plays an essential role in cardiac remodeling after heart injury. However, whether macrophage influence fibroblasts remain a question worth exploring. This study aimed to define the role of berberine (BBR) on isoprenaline (ISO)-induced cardiac fibrosis in an in vivo rat model and try to figure out the mechanism in vitro study. METHODS: The Sprague-Dawley rats were divided into five groups: control group, ISO-treated group, and ISO + BBR (10 mg/kg/d, 30 mg/kg/d, and 60 mg/kg/d orally)-pretreatment groups. Fibrosis was induced by ISO administration (5 mg/kg/d subcutaneously) for 10 days. One day after the last injection, all of the rats were sacrificed. Using picrosirius red (PSR) straining, immunohistochemistry, immunofluorescence, flow cytometry, western blot, RT-qPCR and cell co-culture, we explored the influence of pretreatment by BBR on ISO-induced cardiac fibrosis. RESULTS: Our results showed that BBR pretreatment greatly limited ISO-induced cardiac fibrosis and dysfunction. Moreover, BBR administration reduced macrophage infiltration into the myocardium of ISO-treated rats and inhibited transforming growth factor (TGF)-ß1/smads signaling pathways in comparison to that seen in the ISO group. Besides, in vitro study showed that BBR-pretreatment reduced ISO-induced TGF-ß1 mRNA expression in macrophages and ISO stimulation of macrophages significantly increased the expression of fibrotic markers in fibroblasts, but BBR-pretreatment blocked this increase. CONCLUSION: Our results showed that BBR may have a protective role to cardiac injury via reducing of macrophage infiltration and forbidding fibroblasts transdifferent into an 'activated' secretory phenotype, myofibroblasts.


Subject(s)
Berberine/pharmacology , Cardiomyopathies/prevention & control , Myocytes, Cardiac/drug effects , Protective Agents/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cell Transdifferentiation/drug effects , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Fibrosis , Isoproterenol , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Phosphorylation , Rats, Sprague-Dawley , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism
8.
Mol Med Rep ; 18(3): 3251-3261, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30066870

ABSTRACT

Obesity may induce end­organ damage through metabolic syndrome, and autophagy serves a vital role in the pathogenesis of metabolic syndrome. The purpose of the present study was to define the roles of autophagy and mitophagy in high fat diet (HFD)­induced cardiomyopathy. Male, 8 week­old C57BL/6 mice were fed either a HFD (60% kcal) or a diet of normal chow (NC; 10% kcal) for 42 weeks. Glucose tolerance tests were performed during the feeding regimes. Blood samples were collected for assaying serum triglyceride with the glycerol­3­phosphate oxidase phenol and aminophenazone (PAP) method and total cholesterol was tested with the cholesterol oxidase­PAP method. Myocardial function was assessed using echocardiography and hemodynamic analyses. Western blot analysis was employed to evaluate endoplasmic reticulum stress (ERS), autophagy and mitochondrial function. Electron microscopy was used to assess the number of lipid droplets and the degree of autophagy within the myocardium. The body weight and adipose tissue weight of mice fed the HFD were increased compared with the NC mice. The serum levels of blood glucose, total cholesterol and triglyceride were significantly increased following 42 weeks of HFD feeding. The results of the glucose tolerance tests additionally demonstrated metabolic dysregulation in HFD mice. In addition, HFD mice exhibited hemodynamic and echocardiographic evidence of impaired diastolic and systolic function, including alterations in the cardiac output, end­diastolic pressure, end­diastolic volume and left ventricular relaxation time constant (tau) following HFD intake. Furthermore, a HFD resulted in increased ERS, and a downregulation of the autophagy and mitophagy level. The present study investigated cardiac function in obese HFD­fed mice. These results aid the pursuit of novel therapeutic targets to combat obesity­associated cardiomyopathy.


Subject(s)
Autophagy , Heart Diseases/etiology , Heart Diseases/physiopathology , Obesity/complications , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Biomarkers , Blood Glucose/metabolism , Cell Line , Diet, High-Fat/adverse effects , Disease Models, Animal , Endoplasmic Reticulum Stress , Glucose Tolerance Test , Heart Function Tests , Hemodynamics , Male , Mice , Mitochondria/metabolism , Obesity/etiology
9.
Basic Res Cardiol ; 113(5): 37, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30094473

ABSTRACT

Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.


Subject(s)
Activating Transcription Factor 3/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Signal Transduction , Animals , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cardiovascular System/drug effects , Cardiovascular System/pathology , Cardiovascular System/physiopathology , Gene Expression Regulation , Humans , Molecular Targeted Therapy , Signal Transduction/drug effects , Transcription, Genetic
10.
Basic Res Cardiol ; 113(3): 19, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29564567

ABSTRACT

Previous studies have suggested the involvement of CD4 + T lymphocytes in cardiac remodelling. T-bet can direct Th1 lineage commitment. This study aimed to investigate the functional significance of T-bet in cardiac remodelling induced by pressure overload using T-bet global knockout rats. Increased T-bet levels were observed in rodent and human hypertrophied hearts. T-bet deficiency resulted in a less severe hypertrophic phenotype in rats. CD4 + T-lymphocyte reconstitution in T-bet-/- rats resulted in aggravated cardiac remodelling. T-cell homing molecule expression and cytokine secretion were altered in T-bet-deficient rat hearts. Administration of exogenous interferon-γ (IFN-γ) offset T-bet deficiency-mediated cardioprotection. Cardiomyocytes cultured in T-bet-/- CD4 + T-cell-conditioned media showed a reduced hypertrophic response after hypertrophic stimuli, which was abolished by an IFN-γ-neutralizing antibody. Taken together, our findings show that T-bet deficiency attenuates pressure overload-induced cardiac remodelling in rats. Specifically, targeting T-bet in T cells may be of great importance for the treatment of pathological cardiac remodelling and heart failure.


Subject(s)
Cardiomegaly/metabolism , Cardiomyopathy, Dilated/metabolism , Myocytes, Cardiac/metabolism , T-Box Domain Proteins/deficiency , Th1 Cells/metabolism , Ventricular Remodeling , Adoptive Transfer , Animals , Cardiomegaly/immunology , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Dilated/prevention & control , Cells, Cultured , Chemotaxis, Leukocyte , Cytokines/immunology , Cytokines/metabolism , Gene Knockdown Techniques , Genotype , Humans , Interferon-gamma/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/immunology , Paracrine Communication , Phenotype , Rats, Sprague-Dawley , Rats, Transgenic , Signal Transduction , T-Box Domain Proteins/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/transplantation , Ventricular Remodeling/drug effects , Ventricular Remodeling/genetics
11.
Clin Sci (Lond) ; 132(6): 685-699, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29540538

ABSTRACT

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


Subject(s)
Fibroblasts/drug effects , Heart Ventricles/drug effects , Hypertrophy, Left Ventricular/prevention & control , Leflunomide/pharmacology , Protein Kinase Inhibitors/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/enzymology , Fibroblasts/pathology , Fibrosis , Heart Ventricles/enzymology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Rats , Signal Transduction/drug effects
12.
Planta Med ; 84(2): 91-99, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28841738

ABSTRACT

Fibrosis is a key feature of various cardiovascular diseases and compromises cardiac systolic and diastolic performance. The lack of effective anti-fibrosis drugs is a major contributor to the increasing prevalence of heart failure. The present study was performed to investigate whether the iridoid aucubin alleviates cardiac fibroblast activation and its underlying mechanisms. Neonatal rat cardiac fibroblasts were incubated with aucubin (1, 10, 20, 50 µM) followed by transforming growth factor ß1 (TGFß1, 10 ng/mL) stimulation for 24 h. Fibrosis proliferation was measured by cell counting kit-8 assay. The differentiation of fibroblasts into myofibroblasts was determined by measuring the expression of α-smooth muscle actin. Then, the expressions levels of cardiac fibrosis-related proteins in myofibroblasts were analyzed by western blot and real-time PCR to confirm the anti-fibrosis effect of aucubin. As a result, aucubin suppressed TGFß1-induced proliferation in fibroblasts and inhibited the TGFß1-induced activation of fibroblasts to myofibroblasts. In addition, aucubin further attenuated fibrosis-related protein expression in myofibroblasts. Furthermore, this protective effect was related to increased adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation and decreased mammalian target of rapamycin (mTOR) phosphorylation, which was confirmed by an mTOR inhibitor (rapamycin), an AMPK agonist (AICAR) and an AMPKα inhibitor compound C. Collectively, our findings suggest that aucubin protects against TGFß1-induced fibroblast proliferation, activation and function by regulating the AMPKα/mTOR signal axis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fibroblasts/drug effects , Iridoid Glucosides/pharmacology , Myocardium/cytology , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta1/metabolism , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cells, Cultured , Fibroblasts/metabolism , Fibrosis/prevention & control , Heart/drug effects , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/antagonists & inhibitors
14.
Cell Physiol Biochem ; 44(6): 2212-2227, 2017.
Article in English | MEDLINE | ID: mdl-29248930

ABSTRACT

BACKGROUND/AIMS: Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms. METHODS: The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg-1·day-1) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers. RESULTS: Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling. CONCLUSION: Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding.


Subject(s)
Antioxidants/therapeutic use , Cardiomegaly/drug therapy , Dioxoles/therapeutic use , Lignans/therapeutic use , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Animals , Cardiomegaly/complications , Cardiomegaly/metabolism , Cardiomegaly/pathology , Fibrosis , Heart/drug effects , Inflammation/complications , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , MAP Kinase Signaling System/drug effects , Male , Mice , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/drug effects , Signal Transduction/drug effects
15.
Cell Physiol Biochem ; 42(4): 1313-1325, 2017.
Article in English | MEDLINE | ID: mdl-28700997

ABSTRACT

BACKGROUND/AIMS: An increase in oxidative stress has been implicated in the pathophysiology of pressure-overload induced cardiac hypertrophy. Nobiletin (NOB), extracted from the fruit peel of citrus, possesses anti-oxidative property. Our study aimed to investigate the protective role of NOB in the progression of cardiac hypertrophy in vivo and in vitro. METHODS: Mice received aortic banding (AB) operation to induce cardiac hypertrophy. Experimental groups were as follows: sham+vehicle (VEH/SH), sham+NOB (NOB/SH), AB+vehicle (VEH/AB), and AB+ NOB (NOB/AB). Animals (n = 15 per group) were treated with vehicle or NOB (50 mg/kg) for 4 weeks after disease onset. RESULTS: NOB prevented cardiac hypertrophy induced by aortic banding (AB), as assessed by the cross-sectional area of cardiomyocytes, heart weight-to-body weight ratio, gene expression of hypertrophic markers and cardiac function. In addition, NOB supplementation blunted the increased expression of NAPDH oxidase (NOX) 2 and NOX4 and mitigated endoplasmic reticulum (ER) stress and myocyte apoptosis in cardiac hypertrophy. Furthermore, NOB treatment attenuated the neonatal rat cardiomyocyte (NRCM) hypertrophic response stimulated by phenylephrine (PE) and alleviated ER stress. However, our data showed that NOB dramatically inhibited NOX2 expression but not NOX4 in vitro. Finally, we found that knockdown of NOX2 attenuated ER stress in NRCMs stimulated by PE. CONCLUSIONS: Inhibition of oxidative and ER stress by NOB in the myocardium may represent a potential therapy for cardiac hypertrophy. Moreover, there is a direct role of NOX2 in regulating ER stress stimulated by PE.


Subject(s)
Antioxidants/pharmacology , Cardiomegaly/prevention & control , Cardiotonic Agents/pharmacology , Flavones/pharmacology , Heart/drug effects , Membrane Glycoproteins/antagonists & inhibitors , NADPH Oxidases/antagonists & inhibitors , Animals , Aorta/surgery , Body Weight/drug effects , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Disease Progression , Drug Administration Schedule , Endoplasmic Reticulum Stress/drug effects , Gene Expression/drug effects , Heart/physiopathology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Organ Size/drug effects , Oxidative Stress/drug effects , Phenylephrine/antagonists & inhibitors , Phenylephrine/pharmacology , Primary Cell Culture
16.
Food Funct ; 8(8): 2875-2885, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28726929

ABSTRACT

Myocardial infarction is a devastating event, especially when reperfusion is not performed. The inflammatory response has been associated with the pathogenesis of left ventricular remodeling after myocardial infarction. This study focused on the anti-apoptotic and anti-inflammatory effects of sesamin on ligation of the left anterior descending artery in an experimental mouse model and the potential mechanism underlying the activation of JNK and NF-κB pathways. Mice with MI induced by surgical left anterior descending coronary artery ligation were treated with sesamin by gavage for 1 week. Results showed that after treatment with sesamin, MI-induced cardiac damage was alleviated significantly, indicated by the histopathological examination. The myocardial apoptosis in the border zone was dramatically reduced by sesamin, resulting from the altered expression of apoptosis factors. Moreover, treatment with sesamin also mitigated the inflammatory response, decreased expression of cytokines and the inactivation of NF-κB (nuclear factor κB) signaling. Sesamin decreased the levels of p-JNK protein, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro-apoptotic Bcl-2 and Bax proteins. Thus, our study suggests that sesamin could alleviate MI-induced cardiac dysfunction through decrease of myocardial apoptosis and inflammatory response.


Subject(s)
Apoptosis/drug effects , Dioxoles/administration & dosage , Lignans/administration & dosage , MAP Kinase Kinase 4/immunology , Myocardial Infarction/drug therapy , NF-kappa B/immunology , Plant Extracts/administration & dosage , Sesamum/chemistry , Animals , Disease Models, Animal , Humans , MAP Kinase Kinase 4/genetics , Male , Mice , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , NF-kappa B/genetics , Signal Transduction/drug effects , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/immunology
17.
PPAR Res ; 2017: 2647129, 2017.
Article in English | MEDLINE | ID: mdl-28638404

ABSTRACT

BACKGROUND: Puerarin is a kind of flavonoids and is extracted from Chinese herb Kudzu root. Puerarin is widely used as an adjuvant therapy in Chinese clinics. But little is known about its effects on regulating cardiac fibrosis. METHODS: Mice were subjected to transverse aorta constriction (TAC) for 8 weeks; meanwhile puerarin was given 1 week after TAC. Cardiac fibrosis was assessed by pathological staining. The mRNA and protein changes of CD31 and vimentin in both animal and human umbilical vein endothelial cells (HUVECs) models were detected. Immunofluorescence colocalization of CD31 and vimentin and scratch test were carried out to examine TGF-ß1-induced changes in HUVECs. The agonist and antagonist of peroxisome proliferator-activated receptor-γ (PPAR-γ) were used to explore the underlying mechanism. RESULTS: Puerarin mitigated TAC-induced cardiac fibrosis, accompanied with suppressed endothelial-to-mesenchymal transition (EndMT). The consistent results were achieved in HUVECs model. TGF-ß1/Smad2 signaling pathway was blunted and PPAR-γ expression was upregulated in puerarin-treated mice and HUVECs. Pioglitazone could reproduce the protective effect in HUVECs, while GW9662 reversed this effect imposed by puerarin. CONCLUSION: Puerarin protected against TAC-induced cardiac fibrosis, and this protective effect may be attributed to the upregulation of PPAR-γ and the inhibition of TGF-ß1/Smad2-mediated EndMT.

18.
Hypertension ; 68(6): 1393-1399, 2016 12.
Article in English | MEDLINE | ID: mdl-27698061

ABSTRACT

Identifying the key factor involved in cardiac remodeling is critically important for developing novel strategies to protect against heart failure. Here, the role of Mnk1 (mitogen-activated protein kinase-interacting kinase 1) in cardiac remodeling was clarified. Cardiac remodeling was induced by transverse aortic constriction in Mnk1-knockout mice and their wild-type control mice. After 4 weeks of transverse aortic constriction, Mnk1-knockout mice developed exaggerated cardiac hypertrophy, fibrosis, dysfunction, and cardiomyocyte apoptosis and showed increased ERK1/2 (extracellular signal-regulated kinase 1/2) activation along with reduced sprouty2 expression. In line with the in vivo studies, Mnk1 knockdown by Mnk1 siRNA transfection induced exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). Moreover, adenovirus-mediated overexpression of Mnk1 in NRVMs protected cardiomyocytes from angiotensin II-induced hypertrophy. In addition, overexpression of sprouty2 rescued NRVMs with Mnk1 knockdown from angiotensin II-induced hypertrophy. In accordance with the in vivo studies, as compared with the control group, Mnk1 knockdown led to hyperphosphorylation of ERK1/2 and suppression of the sprouty2 expression in angiotensin II-treated NRVMs; furthermore, Mnk1 overexpression led to hypophosphorylation of ERK1/2 in angiotensin II-treated NRVMs. In addition, sprouty2 overexpression suppressed the activation of ERK1/2 in angiotensin II-treated NRVMs with Mnk1 knockdown. Impressively, MnK1-knockout mice with overexpression of sprouty2 exhibited signs of a blunted cardiac hypertrophic response. Mnk1 likely carries out a suppressive function in cardiac hypertrophy via regulating the sprouty2/ERK1/2 pathway. It implicates Mnk1 in the development of cardiac remodeling.


Subject(s)
Cardiomegaly/metabolism , Mitogen-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Ventricular Remodeling/physiology , Analysis of Variance , Angiotensin II/pharmacology , Animals , Biomarkers/metabolism , Cardiomegaly/physiopathology , Cells, Cultured , Disease Models, Animal , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/deficiency , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Random Allocation , Signal Transduction
19.
Mol Cell Biochem ; 417(1-2): 87-96, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27160937

ABSTRACT

Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-ß1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways.


Subject(s)
Diabetes Mellitus, Experimental/prevention & control , Diabetic Cardiomyopathies/prevention & control , Flavones/pharmacology , Myocardium/metabolism , Oxidative Stress/drug effects , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Male , Mice , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...