Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33383657

ABSTRACT

Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during composting are reported to be controversial, and the intrinsic microbial mechanism remains unclear. Here, a pig manure windrow composting experiment lasting for ~60 days was performed to evaluate the effects of CaSSP amendment (5%, w/w) on N2O fluxes in situ, and to determine the denitrifiers' response, and their driving factors. Results indicated that CaSSP amendment significantly reduced N2O emissions as compared to the control pile (maximum N2O emission rate reduced by 64.5% and total emission decreased by 49.8%). CaSSP amendment reduced the abundance of nirK gene encoding for nitrite reductase, while the abundance of nosZ gene (N2O reductase) was enriched. Finally, we built a schematic model and indicated that the abundance of nirK gene was likely to play a key role in mediating N2O production, which were correlated with NH4+-N and NO3--N changing responsive to CaSSP. Our finding implicates that CaSSP application could be a potential strategy for N2O mitigation in manure windrow composting, and the revealed microbial mechanism is helpful for deepening the understanding of the interaction among N-cycle functional genes, physicochemical factors, and greenhouse gases (GHG) emissions.


Subject(s)
Bacteria/metabolism , Calcium Phosphates/chemistry , Composting , Manure , Nitrous Oxide/chemistry , Animals , Bacteria/genetics , Genes, Bacterial , Swine
2.
Ecol Lett ; 21(7): 1108-1118, 2018 07.
Article in English | MEDLINE | ID: mdl-29736982

ABSTRACT

The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2 ) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2 . We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4 ) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2 O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2 -induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2 -induced rise in soil CH4 and N2 O emissions (2.76 Pg CO2 -equivalent year-1 ) could negate soil C enrichment (2.42 Pg CO2 year-1 ) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year-1 ) under elevated CO2 . Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Methane , Ecosystem , Greenhouse Effect , Nitrous Oxide , Soil
3.
Front Microbiol ; 8: 409, 2017.
Article in English | MEDLINE | ID: mdl-28373862

ABSTRACT

Manure composting is a significant source of atmospheric methane (CH4) and nitrous oxide (N2O) that are two potent greenhouse gases. The CH4 and N2O fluxes are mediated by methanogens and methanotrophs, nitrifying and denitrifying bacteria in composting manure, respectively, while these specific bacterial functional groups may interplay in CH4 and N2O emissions during manure composting. To test the hypothesis that bacterial functional gene abundances regulate greenhouse gas fluxes in windrow composting systems, CH4 and N2O fluxes were simultaneously measured using the chamber method, and molecular techniques were used to quantify the abundances of CH4-related functional genes (mcrA and pmoA genes) and N2O-related functional genes (amoA, narG, nirK, nirS, norB, and nosZ genes). The results indicate that changes in interacting physicochemical parameters in the pile shaped the dynamics of bacterial functional gene abundances. The CH4 and N2O fluxes were correlated with abundances of specific compositional genes in bacterial community. The stepwise regression statistics selected pile temperature, mcrA and NH4+ together as the best predictors for CH4 fluxes, and the model integrating nirK, nosZ with pmoA gene abundances can almost fully explain the dynamics of N2O fluxes over windrow composting. The simulated models were tested against measurements in paddy rice cropping systems, indicating that the models can also be applicable to predicting the response of CH4 and N2O fluxes to elevated atmospheric CO2 concentration and rising temperature. Microbial abundances could be included as indicators in the current carbon and nitrogen biogeochemical models.

4.
Glob Chang Biol ; 23(6): 2520-2532, 2017 06.
Article in English | MEDLINE | ID: mdl-27570182

ABSTRACT

Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2 O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer-reviewed publications with 520 field measurements were synthesized using meta-analysis procedure to examine the N fertilizer-induced soil NO and the combined NO+N2 O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO-N fluxes were estimated to be 4.06 kg ha-1  yr-1 , with the greatest (9.75 kg ha-1  yr-1 ) in vegetable croplands and the lowest (0.11 kg ha-1  yr-1 ) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO ) and combined NO+N2 O (EFc ) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71-1.61% and 1.81-3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.


Subject(s)
Fertilizers , Nitric Oxide , Nitrous Oxide , Soil/chemistry , Crops, Agricultural , Forests
5.
AMB Express ; 6(1): 37, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27207069

ABSTRACT

Manure composting has been recognized as an important anthropogenic source of nitrous oxide (N2O) contributing to global warming. However, biochar effect on N2O emissions from manure composting is rarely evaluated, especially by linking it to abundance of denitrifying bacteria community. Results of this study indicated that biochar amendment significantly reduced N2O emissions from manure composting, primarily due to suppression of the nirK gene abundance of denitrifying bacteria. Pearson's correlation analysis showed a significant positive correlation between nirK abundance and N2O fluxes, while a negative correlation between nosZ density and N2O fluxes. Simultaneously, a linear correlation between nirK gene abundance minus nosZ gene abundance with N2O fluxes was also observed. In addition, a statistical model for estimating N2O emissions based on the bacterial denitrifying functional genes was developed and verified to adequately fit the observed emissions. Our results highlighted that biochar amendment would be an alternative strategy for mitigating N2O emissions during manure composting, and the information of related functional bacterial communities could be helpful for understanding the mechanism of N2O emissions.

6.
Sci Rep ; 6: 20700, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26848094

ABSTRACT

It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 µg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.


Subject(s)
Crops, Agricultural/chemistry , Fertilizers/analysis , Nitric Oxide/analysis , Nitrous Oxide/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Greenhouse Effect , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...