Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Food Chem ; 454: 139784, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38815321

ABSTRACT

This study explored the effect of constant-current pulsed electric field thawing (CC-T) on the proteins and water-holding capacity of pork. Fresh meat (FM), and frozen meat after constant-voltage thawing (CV-T), air thawing (AT) and water immersion thawing (WT) were considered as controls. The results indicated that CC-T had a higher thawing rate than conventional thawing during ice-crystal melting stage (-5 to -1 °C). It also showed a lower water migration and thawing loss, maintaining pH and shear force closer to FM. Meanwhile, CC-T decreased myoglobin oxidation, resulting in a favorable surface color. The results of protein solubility, differential scanning calorimetry, total sulfhydryl, carbonyl and surface hydrophobicity demonstrated that CC-T reduced myofibrillar protein oxidative denaturation by suppressing the formation of disulfide and carbonyl bonds, thus enhancing solubility and thermal stability. Additionally, microstructural observation found that CC-T maintained a relatively intact muscle fiber structure by reducing muscle damage and myosin filament denaturation.

2.
Food Chem ; 453: 139709, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781908

ABSTRACT

As an emerging physical technology, magnetic fields have been used to improve the quality of frozen and refrigerated foods. This study compared the effect of applying a static magnetic field (2 mT) at different stages of freezing and storage on the quality of frozen dough. Results suggested that the magnetic field significantly impacted frozen dough quality. It not only prevented the formation of ice crystals during the pre-freezing stage but also inhibited ice crystal growth during the following frozen storage. This effect helped to maintain the integrity of gluten proteins and their adhesion to starch granules by preventing the breakage of disulfide bonds and the depolymerization of gluten macromolecules. It was also observed that yeast inactivation and glutathione release were reduced, resulting in improved air retention and air production capacity of the dough. This, in turn, led to a more appealing volume and texture quality of the finished bread.


Subject(s)
Bread , Flour , Freezing , Magnetic Fields , Triticum , Triticum/chemistry , Bread/analysis , Flour/analysis , Glutens/chemistry , Glutens/analysis , Cooking
3.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598555

ABSTRACT

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Subject(s)
Extracellular Vesicles , Liver Cirrhosis , Schistosoma japonicum , Schistosomiasis japonica , Animals , Extracellular Vesicles/metabolism , Liver Cirrhosis/parasitology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Schistosomiasis japonica/metabolism , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/pathology , Mice , Host-Parasite Interactions/physiology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/parasitology , Hepatic Stellate Cells/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Signal Transduction , Humans , Helminth Proteins/metabolism , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL
4.
Foods ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672878

ABSTRACT

Fresh pork tenderloin was stored at -3 °C under different static magnetic fields (SMF) of 0, 4, and 10 mT (control, MF-4, and MF-10) to investigate their physicochemical properties changes during storage of 8 days. The initial equilibrium temperature of the samples stored with 4 mT MF was found to be -2.3 °C, which was slightly lower (0.3 °C) than that the control value. The super-chilling phenomenon on the pork was then observed, as the samples stored under the magnetic field did not freeze throughout storage period, but the control experienced a sudden change in temperature after 138 h and then froze. The preservation effect of MF-4 on meat quality was the best in all treatment groups. MF-4 achieved a higher water-retention rate, with drip and cook losses of 6.5% and 29.0% lower than the control, respectively. Meanwhile, the MF-4 effectively delayed the color change in the meat during the storage and the texture hardening after cooking, and effectively controlled the growth of the total volatile saline nitrogen content on the samples. In addition, MF-4 delayed the reduction in myofibrillar protein solubility, sulfhydryl content, and emulsification capacity, indicating that this field inhibited the denaturation of myofibrillar protein. This study can be considered as an application reference of magnetic fields during meat storage at a super-chilled temperature.

5.
Foods ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38472790

ABSTRACT

A novel electromagnetic heat method is presented for green extraction of natural compounds from peel residue. In the processing cavity obtained through 3D printing, a core made of amorphous alloy was applied to strengthen the magnetic flux. During the process, an induced electric field was produced in the extract medium owing to an oscillating magnetic field at 50 kHz rather than a pair of electrodes; thus, electrochemical reactions could be avoided. A thermal effect and temperature rise were observed under the field, and essential oil was obtained via this electromagnetic heat hydrodistillation. In addition, the numerical relationships between magnetic field, induced electric field (IEF), induced current density, and temperature profile were elaborated; they were positively correlated with the extraction yield of essential oils. It was found that the waveforms of the magnetic field, induced electric field, and excitation voltage were not consistent. Using a higher magnetic field resulted in high current densities and terminal temperatures in the extracts, as well as higher essential oil yields. When the magnetic field strength was 1.39 T and the extraction time was 60 min, the maximum yield of essential oil reached 1.88%. Meanwhile, conventional hydrodistillation and ohmic heating hydrodistillation were conducted for the comparison; all treatments had no significant impact on the densities. In addition, the essential oil extracted by electromagnetic heat had the lowest acid value and highest saponification value. The proportion of monoterpenoids and oxygen-containing compounds of essential oil extracted by this proposed method was higher than the other two methods. In the end, the development of this electromagnetic heat originating from magnetic energy has the potential to recover high-value compounds from biomass waste.

6.
Int J Biol Macromol ; 262(Pt 2): 130212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365142

ABSTRACT

A novel electromagnetic heat extraction method was presented, whereby mandarin peels residue solution was located in a winding coil subjected to an oscillating magnetic field, and the pectin was extracted under appropriate conditions. Numerical relationships between applied magnetic field and induced electric field (IEF) in the extraction process were elaborated. The results showed that the induced current density, IEF and terminal temperature increased with increasing magnetic field. The maximum current density of 0.35 A/cm corresponds to the highest terminal temperature of 84.6 °C and IEF intensity of 26.6 V/cm. When magnetic field intensity was 1.39 T and the extraction time was 15 min, the maximum yield of pectin reached 9.16 %. In addition, all treatments impacted the ash content, protein content, water-holding capacity (WHC), and oil-holding capacity (OHC) of the obtained pectin. The pectin extracted by electromagnetic heat had the lowest DE value of 71.3 % with 126.55 kDa molecular weight, while the GalA content was at the highest level of 76.18 %. After different treatments, the composition of pectin monosaccharides changed, but there were slight differences in the composition of pectin polysaccharides. Moreover, the electromagnetic heat extracted pectin had light color and an obvious surface fragmentation of the peel residue.


Subject(s)
Hot Temperature , Pectins , Pectins/chemistry , Polysaccharides , Monosaccharides , Electromagnetic Phenomena
7.
Int J Biol Macromol ; 261(Pt 2): 129839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309397

ABSTRACT

This study evaluated the effectiveness of induced electric field (IEF) as a novel electrotechnology to assist dilute acid pretreatment of wheat straw (WS) at atmospheric pressure and low temperature (90 °C). The effects of acid concentration and duration on cellulose recovery, hemicellulose and lignin removal were investigated. Meanwhile, the differences between IEF pretreatment and hydrothermal pretreatment were compared by quantitative and qualitative analysis. The optimal pretreatment condition was acid concentration 1 % with the period of 5 h. Under the parameters, the hemicellulose removal of WS after IEF pretreatment was up to 73.6 %, and the enzymatic efficiency was 55.8 %. In addition, the irregular surface morphology, diminished functional groups associated with hemicellulose, increased specific surface area and pore volume, as well as improved thermal stability of the residual WS support the remarkable effect of IEF pretreatment. The feasibility of IEF pretreatment is might be due to the fact that the magneto-induced electric field promotes ionization of H+ and formation of hydrated hydrogen ions, increasing the acidity of the medium. Secondly, electroporation disrupts the anti-degradation structure of WS and increases the accessibility of cellulose to cellulases. It indicated that IEF is a green and efficient strategy for assisting the separation of hemicellulose from lignocellulose.


Subject(s)
Cellulose , Lignin , Polysaccharides , Lignin/chemistry , Hydrolysis , Cellulose/chemistry , Acids , Hydrolases , Triticum/chemistry
8.
Medicine (Baltimore) ; 103(8): e37074, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394504

ABSTRACT

RATIONALE: Methimazole (MMI) is the first-line agent in the treatment of hyperthyroidism. However, rare but severe cholestatic jaundice may occur. Therapeutic plasma exchange (TPE) may provide an alternative treatment for such patients and they received thyroidectomy/radioactive iodine ablation or continued oral anti hyperthyroidism medication immediately after TPE session in the reported literatures. The case reported here is, to our knowledge, the first to describe the long interval between anti hyperthyroidism therapy and TPE in such patients. PATIENT CONCERNS: A 49-year-old Chinese woman had developed worsening jaundice 3 weeks after receiving methimazole (20 mg/day) for the treatment of hyperthyroidism secondary to Graves' disease (GD). Additionally, she had a 2-year history of type 2 diabetes. DIAGNOSIS: Hyperthyroidism secondary to GD, MMI-induced severe cholestatic jaundice and type 2 diabetes. INTERVENTIONS: Methimazole was discontinued and the patient received 3 times of TPE, about 3-month glucocorticoid treatment, insulin administration accordingly and other conventional liver-protecting therapy. OUTCOMES: Her thyroid function was stabilized with small dose of thyroxine substitution and euthyroid status persisted after thyroxine discontinuation until hyperthyroidism recurred 7 months later while her cholestatic jaundice was eventually recovered by about 3-month glucocorticoid therapy. LESSONS: Due to the complex interplay between liver function and thyroid hormones, there may be unusual changes of thyroid function in GD patients with severe liver injury after TPE. By this case, we want to highlight the importance of a closely following up of thyroid function in order to deliver appropriate health suggestions for patients.


Subject(s)
Diabetes Mellitus, Type 2 , Graves Disease , Hyperthyroidism , Jaundice, Obstructive , Thyroid Neoplasms , Humans , Female , Middle Aged , Methimazole/adverse effects , Thyroxine , Plasma Exchange , Jaundice, Obstructive/therapy , Jaundice, Obstructive/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Iodine Radioisotopes/therapeutic use , Glucocorticoids/therapeutic use , Thyroid Neoplasms/therapy , Neoplasm Recurrence, Local/drug therapy , Graves Disease/complications , Graves Disease/therapy , Hyperthyroidism/drug therapy , Antithyroid Agents/adverse effects
9.
Bioresour Technol ; 393: 130087, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042431

ABSTRACT

The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.


Subject(s)
Magnetic Fields , Photosynthesis , Fermentation , Electron Transport , Biomass
10.
Int J Biol Macromol ; 258(Pt 2): 128864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158059

ABSTRACT

Starch a natural polymer, has made significant advancements in recent decades, offering superior performance and versatility compared to synthetic materials. This review discusses up-to-date diverse applications of starch gels, their fabrication techniques, and their advantages over synthetic materials. Starch gels renewability, biocompatibility, biodegradability, scalability, and affordability make them attractive. Also, advanced theoretical foundations and emerging industrial technologies could further expand their scope and functions inspiring new applications.


Subject(s)
Industry , Starch , Gels
11.
Vet Res ; 54(1): 116, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049816

ABSTRACT

Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.


Subject(s)
Schistosoma japonicum , Schistosomiasis , Humans , Female , Animals , Schistosoma japonicum/genetics , Schistosomiasis/veterinary , Immunoglobulin G , Reproduction , Annexins/metabolism
12.
Biology (Basel) ; 12(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38132291

ABSTRACT

Liver fibrosis (LF) is a chronic progressive disease with no definitive treatment. The aim of this study was to assess helminth-derived molecules as potential therapeutic targets to prevent or reverse LF. A mouse model of carbon tetrachloride (CCL4)-induced LF was established and sja-let-7 was overexpressed by treatment with a miRNA agomir once per week. After four weeks, serum biochemistry, hepatic hydroxyproline content measurements, liver histology, mRNA expression profiling of fibrotic markers, the dual-luciferase reporter assay, and fluorescence in situ hybridization (FISH) were performed. Administration of the sja-let-7 agomir markedly ameliorated hepatosplenomegaly and reduced the liver hydroxyproline content. Liver histological analysis showed significant reductions in collagen deposition in the sja-let-7 agomir-treated mice. Additionally, the mRNA levels of both pro-fibrotic markers and pro-inflammatory cytokines were diminished after treatment. Furthermore, the dual-luciferase reporter assay and FISH identified the α2 chain of collagen type 1 (Col1α2) as the direct target of sja-let-7. Accordingly, the progression of LF was attenuated by targeting Col1α2 and the TGF-ß/Smad signaling pathway.

13.
Front Immunol ; 14: 1158805, 2023.
Article in English | MEDLINE | ID: mdl-37153566

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by dioecious blood flukes of the genus Schistosoma and second to malaria as a parasitic disease with significant socio-economic impacts. Mating is essential for maturation of male and female schistosomes and for females to lay of eggs, which are responsible for the pathogenesis and propagation of the life cycle beyond the mammalian host. Single-sex schistosomes, which do not produce viable eggs without mating, have been overlooked given the symptomatic paucity of the single-sex schistosomiasis and limited diagnostic toolkit. Besides, single-sex schistosomes are less sensitive to praziquantel. Therefore, these issues should be considered to achieve the elimination of this infection disease. The aim of this review is to summarize current progress in research of single-sex schistosomes and host-parasite interactions.


Subject(s)
Schistosomiasis , Animals , Male , Female , Schistosomiasis/diagnosis , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Schistosoma , Praziquantel/therapeutic use , Host-Parasite Interactions , Life Cycle Stages , Mammals
14.
Exp Parasitol ; 248: 108504, 2023 May.
Article in English | MEDLINE | ID: mdl-36914063

ABSTRACT

Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and is responsible for ∼250 million human cases per year. Due to the extensive use of praziquantel for the treatment of parasitic diseases, drug resistance has been reported. Consequently, novel drugs and effective vaccines are urgently needed for sustained control of schistosomiasis. Targeting reproductive development of Schistosoma japonicum could contribute to the control of schistosomiasis. In this study, five highly expressed proteins (S. japonicum large subunit ribosomal protein L7e, S. japonicum glutathione S-transferase class-mu 26 kDa isozyme, S. japonicum UDP-galactose-4-epimerase and two hypothetical proteins SjCAX70849 and SjCAX72486) in 18, 21, 23, and 25-day mature female worms compared to single-sex infected female worms were selected based on our previous proteomic analysis. Quantitative real-time polymerase chain reaction analysis and long-term interference with small interfering RNA were performed to identify the biological functions of these five proteins. The transcriptional profiles suggested that all five proteins participated in the maturation of S. japonicum. RNA interference against these proteins resulted in morphological changes to S. japonicum. The results of an immunoprotection assay revealed that immunization of mice with recombinant SjUL-30 and SjCAX72486 upregulated production of immunoglobulin G-specific antibodies. Collectively, the results demonstrated that these five differentially expressed proteins were vital to reproduction of S. japonicum and, thus, are potential candidate antigens for immune protection against schistosomiasis.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis , Sexual and Gender Minorities , Female , Humans , Animals , Mice , Proteomics , Praziquantel/pharmacology
15.
Acta Trop ; 241: 106874, 2023 May.
Article in English | MEDLINE | ID: mdl-36863502

ABSTRACT

Praziquantel (PZQ) is the first line drug for the treatment of schistosomiasis. Several studies have confirmed that PZQ regulates host immunity, and we have recently found that pretreatment with PZQ enhances resistance against Schistosoma japonicum infection in buffaloes. We speculate that PZQ induces physiological changes in mice that prevent S. japonicum infection. To test this hypothesis and provide a practical measure to prevent S. japonicum infection, we determined the effective dose (the minimum dose), protection period and onset time of protection by comparing the worm burden, female worm burden and egg burden in PZQ-pretreated mice and blank control mice. Morphological differences between parasites were observed by measuring the total worm length, oral sucker, ventral sucker and ovary. The levels of cytokines, nitrogen monoxide (NO), 5-hydroxytryptamine (5-HT) and specific antibodies were measured using kits or soluble worm antigens. Hematological indicators on day 0 were analyzed in mice that received PZQ on days -15, -18, -19, -20, -21 and -22. The PZQ concentrations in plasma and blood cells were monitored using high performance liquid chromatography (HPLC). The effective dose was found to be two oral administrations (interval of 24 h) at 300 mg/kg body weight (BW) or one injection at 200 mg/kg BW, and the protection period of PZQ injection was 18 days. The optimal preventive effect was observed at two days post-administration, with a >92% worm reduction rate and significant worm reduction until 21 days after administration. Adult worms from PZQ-pretreated mice were runtish showing a shorter length, smaller organs and fewer eggs in the uteri of females. Detection of cytokines, NO, 5-HT and hematological indicators showed that PZQ induced immune-physiological changes, including higher levels of NO, IFN-γ and IL-2, and a lower level of TGF-ß. No significant difference in the anti-S. japonicum specific antibody levels was observed. The PZQ concentrations in plasma and blood cells 8 and 15 days post-administration were lower than the detection limit. Our results confirmed that pretreatment with PZQ promotes the protection of mice against S. japonicum infection within 18 days. Although we observed some immune-physiological changes in the PZQ-pretreated mice, the exact mechanisms involved in the preventive effect require further study.


Subject(s)
Anthelmintics , Schistosoma japonicum , Schistosomiasis japonica , Female , Animals , Mice , Praziquantel/therapeutic use , Schistosomiasis japonica/drug therapy , Schistosomiasis japonica/prevention & control , Schistosomiasis japonica/parasitology , Schistosoma japonicum/physiology , Serotonin/pharmacology , Serotonin/therapeutic use , Administration, Oral , Antibodies , Schistosoma mansoni , Anthelmintics/therapeutic use
16.
Food Microbiol ; 111: 104208, 2023 May.
Article in English | MEDLINE | ID: mdl-36681392

ABSTRACT

Induced electric field (IEF), as an alternative non-conventional processing technique, is utilized to sterilize liquid foods. In this study, the survival and sublethal injury of S. aureus under IEF were investigated in 0.85% normal saline, and the inactivation mechanism of IEF was expounded. The plate count results showed that the sublethal injury rates remained above 90% after IEF treatment for more than 8.4 s, and 7.1 log CFU/mL of S. aureus was completely inactivated after 14 s IEF treatment. Scanning electron microscopy and transmission electron microscope images showed that IEF caused the destruction of cell membrane and internal substructure, and the damage to intracellular substructure was more severe. Altered membrane integrity or permeability was demonstrated through flow cytometry and confocal laser scanning microscope analysis, and the different damage to cells was quantified by propidium iodide & 5-carboxy fluorescein diacetate single and double staining. In addition, IEF treatment also decreased the membrane potential and esterase activity of S. aureus cells. Putative inactivation mechanism of IEF against S. aureus is a complex process, and its apoptosis is the result of the combination of several factors, which provide a basis for understanding the inactivation mechanism of IEF.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Staphylococcus aureus/physiology , Cell Membrane , Microscopy, Electron, Scanning
17.
Food Chem ; 400: 133950, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36055137

ABSTRACT

Effect of soluble soybean polysaccharides (SSPS) and acidic condition on the bread staling of crumb and crust were evaluated in bread characteristics, water migration, starch retrogradation, and flavor. Bread characteristic analysis showed SSPS and acidic conditions significantly improved bread quality during storage, maintaining crumb softness. The staling rate of the synergistic group under SSPS and acidic condition decreased by 49.46% compared to the control group. This retardation was associated with water migration and starch retrogradation. SSPS and acidic conditions restricted the water migration from crumb to crust. A synergy between SSPS and acidification restrained the relative crystallinity and retrogradation enthalpy in bread crumbs and crust during storage. The scores plot and heat map analysis indicated SSPS and acidic condition was facilitated the flavors retention in the crumb and crust after stored 7-days. This study suggested SSPS and acidic conditions might be beneficial for extending bread shelf-life.


Subject(s)
Bread , Glycine max , Starch , Triticum , Water
18.
Foods ; 11(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36496744

ABSTRACT

The proposed non-conventional induction heating, which combines an MSCP and VDC structure, was proved to have excellent thermal effect. Different from other electric field sterilization, this electrotechnology operates with no electrodes, and it is a continuous-flow process with short-duration (about 20 s). In current study, the parameters related to temperature rise were investigated, including applied voltage, frequency, the diameter of the secondary coil and heating tube, as well as their length, etc. It was demonstrated that a smaller diameter of the heating tube, parallel connection sample coils, and higher frequency were beneficial for the inactivation of microorganisms. At 500 Hz, the optimal condition is 800 V, d1 = 2 mm, and L1 = 10 cm. Notably, the system could inactivate all microorganisms and maintained the physicochemical properties of apple juice at 40 kHz. It suggests that this structural design has the potential for industrial applications and the proposed induction heating can realize the rapid sterilization of liquid food without applying electrodes.

19.
Int J Parasitol ; 52(13-14): 815-828, 2022 12.
Article in English | MEDLINE | ID: mdl-36265673

ABSTRACT

Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real­time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis , Sexual and Gender Minorities , Animals , Female , Male , Humans , Schistosoma japonicum/genetics , Proteomics , RNA, Small Interfering , Schistosomiasis japonica/parasitology , Mammals
20.
Exp Parasitol ; 239: 108305, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714725

ABSTRACT

The large amount of schistosome eggs produced by mature female worms not only induce major pathological damage to the host but also lead to the transmission of schistosomiasis. Mature female schistosome worms need constant pairing contact with a male partner as male signaling is indispensable to female growth, development, and reproduction. The gynecophoral canal protein (GCP), a cell-surface glycoprotein, plays a potential role in the interaction between males and females and in stimulating female development and maturation. In this study, a yeast two-hybrid cDNA library of Schistosoma japonicum (Sj) parasites 18 days post-infection (dpi) was constructed; the Sjgcp gene was inserted into a pGBKT7-BD bait plasmid and used as a bait protein to screen for its molecular interactions using a yeast mating procedure. Twenty-four prey proteins that interacted with the SjGCP were selected after excluding false positives; the interactions between S.japonicum lethal giant larvae (SjLGL) and SjGCP, S.japonicum type V collagen (SjColV) and SjGCP, were verified by co-immunoprecipitation. The RNA interference against SjGCP, SjColV and SjGCP + SjColV led to severe underdevelopment of tegument in male worms and vitelline globules in female worms as well as reduced reproductive capacity of the females. Collectively, SjGCP and its interacting proteins may play pivotal roles in growth and development. The findings also suggested that SjGCP and its interacting protein partners might represent new candidate targets for drug development against schistosomiasis.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Animals , Female , Helminth Proteins/genetics , Helminth Proteins/metabolism , Male , Saccharomyces cerevisiae/genetics , Schistosoma japonicum/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...