Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chin Med J (Engl) ; 131(16): 1917-1925, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30082522

ABSTRACT

Background: Follistatin-like 1 (FSTL1) is a novel profibrogenic factor that induces pulmonary fibrosis (PF) through the transforming growth factor-beta 1 (TGF-ß1)/Smad signaling. Little is known about its effects on PF through the non-Smad signaling, like the mitogen-activated protein kinase (MAPK) pathway. Therefore, this study aimed to investigate the role of FSTL1 in PF through the MAPK signaling pathway and its mechanisms in lung fibrogenesis. Methods: PF was induced in Fstl1+/-and wild-type (WT) C57BL/6 mice with bleomycin. After 14 days, the mice were sacrificed, and lung tissues were stained with hematoxylin and eosin; the hydroxyproline content was measured to confirm PF. The mRNA and protein level of FSTL1 and the change of MAPK phosphorylation were measured by quantitative polymerase chain reaction and Western blotting. The effect of Fstl1 deficiency on fibroblasts differentiation was measured by Western blotting and cell immunofluorescence. MAPK signaling activation was measured by Western blotting in Fstl1+/- and WT fibroblasts treated with recombinant human FSTL1 protein. We pretreated mouse lung fibroblast cells with inhibitors of the extracellular signal-regulated kinase (ERK), p38, and Jun N-terminal kinase (JNK) signaling and analyzed their differentiation, proliferation, migration, and invasion by Western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis, and transwell assays. The Student's t-test was used to compare the differences between two groups. Results: Fstl1 deficiency attenuated phosphorylation of the ERK, p38, and JNK signaling in bleomycin-induced fibrotic lung tissue 14 days after injury (0.67 ± 0.05 vs. 1.22 ± 0.03, t = 14.92, P = 0.0001; 0.41 ± 0.01 vs. 1.15 ± 0.07; t = 11.19; P = 0.0004; and 0.41 ± 0.01 vs. 1.07 ± 0.07, t = 8.92, P = 0.0009; respectively), compared with WT lungs at the same time and in primary lung fibroblasts (0.82 ± 0.01 vs. 1.01 ± 0.04, t = 4.06, P = 0.0150; 1.04 ± 0.03 vs. 1.24 ± 0.03, t = 4.44, P = 0.0100; and 0.76 ± 0.05 vs. 0.99 ± 0.05, t = 4.48, P = 0.0100; respectively), compared with TGF-ß1-stimulated WT group. Recombinant human FSTL1 protein in lung fibroblasts enhanced TGF-ß1-mediated phosphorylation of the ERK (1.19 ± 0.08 vs. 0.55 ± 0.04, t = 6.99, P = 0.0020), p38 (1.18 ± 0.04 vs. 0.66 ± 0.03, t = 11.20, P = 0.0020), and JNK (1.11 ± 0.01 vs. 0.84 ± 0.04, t = 6.53, P = 0.0030), compared with the TGF-ß1-stimulated WT group. Fstl1-deficient fibroblasts showed reduced alpha-smooth muscle actin (α-SMA) expression (0.70 ± 0.06 vs. 1.28 ± 0.11, t = 4.65, P = 0.0035, compared with the untreated WT group; 1.40 ± 0.05 vs. 1.76 ± 0.02, t = 6.31, P = 0.0007; compared with the TGF-ß1-treated WT group). Compared with the corresponding condition in the control group, the TGF-ß1/FSTL1-mediated α-SMA expression was significantly suppressed by pretreatment with an inhibitor of p38 (0.73 ± 0.01 vs. 1.13 ± 0.10, t = 3.92, P = 0.0078) and JNK (0.78 ± 0.03 vs. 1.08 ± 0.06, t = 4.40, P = 0.0046) signaling. The proliferation of mouse lung fibroblast cells (MLgs) significantly decreased after treatment of an inhibitor of p38 (0.30 ± 0.01 vs. 0.46 ± 0.03, t = 4.64, P = 0.0009), JNK (0.30 ± 0.01 vs. 0.49 ± 0.01, t = 12.84, P = 0.0001), and Smad2/3 (0.18 ± 0.02 vs. 0.46 ± 0.02, t = 12.69, P = 0.0001) signaling compared with the dimethylsulfoxide group. The migration and invasion cells of MLgs significantly decreased in medium pretreated with an inhibitor of p38 (70.17 ± 3.28 vs. 116.30 ± 7.11, t = 5.89, P = 0.0042 for the migratory cells; 19.87 ± 0.84 vs. 32.70 ± 0.95, t = 10.14, P = 0.0005 for the invasive cells), JNK (72.30 ± 3.85 vs. 116.30 ± 7.11, t = 5.44, P = 0.0056 for the migratory cells; 18.03 ± 0.94 vs. 32.70 ± 0.95, t = 11.00, P = 0.0004 for the invasive cells), and Smad2/3 (64.76 ± 1.41 vs. 116.30 ± 7.11, t = 7.11, P = 0.0021 for the migratory cells; 18.03 ± 0.94 vs. 32.70 ± 0.95, t = 13.29, P = 0.0002 for the invasive cells) signaling compared with the corresponding condition in the dimethylsulfoxide group. Conclusion: FSTL1 affects lung fibroblast differentiation, proliferation, migration, and invasion through p38 and JNK signaling, and in this way, it might influence the development of PF.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Bleomycin/adverse effects , Follistatin-Related Proteins/physiology , Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , Animals , Cells, Cultured , Fibroblasts , Follistatin , Humans , Mice , Mice, Inbred C57BL , Transforming Growth Factor beta , Transforming Growth Factor beta1/physiology
2.
Clin Respir J ; 9(1): 27-33, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24405893

ABSTRACT

OBJECTIVE: Underlying mechanisms of non-small cell lung cancer (NSCLC) development remain poorly understood. miR-138 and 3-phosphoinositide-dependent protein kinase-1 (PDK1) have been reported to be involved in the genesis of NSCLC. The aim of this study was to investigate the role and mechanisms of miR-138 and PDK1 in human NSCLC cells. METHODS: The effect of miR-138 on proliferation of A549 lung cancer cells was first examined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The expression of PDK1 in A549 lung cancer cells was assessed by real-time polymerase chain reaction further. A luciferase reporter activity assay was conducted to confirm target association between miR-138 and 3' untranslated region (3'-UTR) of PDK1. Finally, the role of PDK1 on proliferation of A549 cells was evaluated by transefection of PDK1 small interfering RNA (siRNA). RESULTS: Proliferation of A549 lung cancer cells was suppressed by miR-138 in a concentration-dependent manner. Furthermore, miR-138 can bind to the 3'-UTR of PDK1 and downregulate expression of PDK1 at both mRNA and protein levels. Knockdown of PDK1 by siRNA significantly inhibits the proliferation of A549 lung cancer cells. CONCLUSIONS: These findings suggest that miR-138 as a potential tumor suppressor could inhibit cell proliferation by targeting PDK1 in NSCLC cells, which could be employed as a potential therapeutic target for miRNA-based NSCLC therapy.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/physiology , Lung Neoplasms/pathology , MicroRNAs/physiology , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/etiology , Cell Culture Techniques , Cell Line, Tumor , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/etiology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...