Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Food Chem ; 454: 139609, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38795615

ABSTRACT

Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.

2.
Food Chem ; 448: 138988, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38522295

ABSTRACT

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Subject(s)
Emulsions , Gels , Linseed Oil , Ovalbumin , Oxidation-Reduction , Transglutaminases , Ovalbumin/chemistry , Transglutaminases/chemistry , Transglutaminases/metabolism , Emulsions/chemistry , Linseed Oil/chemistry , Gels/chemistry
3.
Colloids Surf B Biointerfaces ; 237: 113842, 2024 May.
Article in English | MEDLINE | ID: mdl-38513299

ABSTRACT

Exploring affordable and easily prepared inorganic-organic hybrid membrane materials has attracted a great interest in the bone repair field. This study is based on biomimetic mineralization technique to study the role of phosvitin (PV) in the mineralized process of eggshell inner membrane. Results showed that PV promoted the formation of hydroxyapatite on the eggshell inner membrane surface, and the phosvitin content in the simulated body fluid was decreased during the mineralization process. Besides, in vitro preosteoblast experiments indicated that mineralized membrane with PV exhibited more conducive to cell proliferation and differentiation than that mineralized membrane without PV. Interestingly, with the increase of mineralization time, the stimulating ability of mineralized membranes with PV on adhesion, proliferation, alkaline phosphatase activity and collagen type I content gradually improved. In summary, the eggshell inner membrane composites mineralized with PV obtained by biomimetic mineralization might be potential scaffold materials for bone repair.


Subject(s)
Egg Shell , Phosvitin , Animals , Phosvitin/pharmacology , Osteogenesis , Cell Differentiation , Membranes , Tissue Scaffolds
4.
J Food Sci ; 89(5): 2684-2700, 2024 May.
Article in English | MEDLINE | ID: mdl-38551186

ABSTRACT

Salted egg yolks have a tender, loose, gritty, and oily texture and are commonly employed as fillings in baked goods. This study investigated the formation mechanism of egg yolk gels using three different pickling methods: NaCl, sucrose, and mixed groups. The results revealed that of these pickling methods, egg yolks pickled with the mixture had the lowest moisture content (11.59% at 25°C and 10.21% at 45°C), almost no free water content, and the highest hardness (19.11 N at 25°C and 31.01 N at 45°C). Intermolecular force measurements indicated that pickling with the mixture mitigated the surface hardening effect of sucrose and facilitated protein cross-linking. Moreover, confocal laser scanning microscopy of the egg yolk gels pickled with the mixture displayed macromolecular aggregates and oil exudation, suggesting that this method partially disrupted the lipoprotein structure and notably promoted yolk protein aggregation and lipid release. Overall, egg yolks formed a dense gel via the mixed pickling method owing to the ionic concentration and dehydration effects. These findings show the impact of NaCl and sucrose in pickling egg yolks, providing a crucial foundation for developing innovative and desirable egg yolk products. PRACTICAL APPLICATION: This study introduces a novel pickling strategy that combines sucrose and NaCl for egg yolk processing. The egg yolk pickled using this method exhibited improved quality according to the evaluated textural characteristics, moisture distribution, and protein aggregation behavior. The findings may broaden the use of sucrose as a pickling agent for egg yolk processing and provide new ideas for developing and producing pickled eggs and other food products.


Subject(s)
Egg Proteins , Egg Yolk , Food Handling , Sodium Chloride , Sucrose , Water , Egg Yolk/chemistry , Sucrose/chemistry , Sodium Chloride/chemistry , Water/chemistry , Egg Proteins/chemistry , Food Handling/methods , Protein Aggregates , Gels/chemistry , Animals , Chickens
5.
Int J Biol Macromol ; 254(Pt 1): 127662, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884229

ABSTRACT

Chitin nanofibers (ChNFs) have a wide range of applications in numerous fields owing to their exceptional material properties and biological functionality. This research focused on producing ChNFs with diameters of 20-70 nm using chitinase and ultrasound from crayfish shells. The impact of enzymatic duration on ChNF yield and performance was investigated. Results revealed ChNFs forming a high aspect ratio network structure. Chitinase hydrolysis enhanced ChNF dispersion and yield while improving crystallinity and thermal stability without significantly altering their chemical structure. Enzymatically modified ChNF suspensions also exhibited stable rheological properties. Moreover, ChNFs showed good emulsification and emulsion stability in Pickering emulsion. The mechanism may be the effective adsorption of ChNFs at the oil-water interface, and the formation of a ChNF network in the continuous phase that prevents droplet coalescence. This study highlights that the potential of chitinase and ultrasound for the production of ChNFs and the utilization of crayfish shell waste.


Subject(s)
Chitinases , Nanofibers , Hydrolysis , Chitin/chemistry , Nanofibers/chemistry , Emulsions/chemistry
6.
Food Res Int ; 175: 113709, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129033

ABSTRACT

Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.


Subject(s)
Hot Temperature , Myofibrils , Swine , Animals , Crystallization , Myofibrils/chemistry , Hydrogen Peroxide/metabolism , Muscle Proteins/chemistry , Gels/chemistry , Water/chemistry
7.
Food Res Int ; 172: 113157, 2023 10.
Article in English | MEDLINE | ID: mdl-37689846

ABSTRACT

As a weakly gelling protein, hot spring egg white underwent thinning during storage. This study explored the mechanism of thinning in hot spring egg white from the perspective of "gel structure and protein composition" using quantitative proteomics, SEM, SDS-PAGE, and other techniques. Quantitative proteomics analysis showed that there were 81 (44 up-regulated and 21 down-regulated) key proteins related to thinning of hot spring egg white. The changes in the relative abundance of proteins such as ovalbumin-related Y, mucin-6, lysozyme, ovomucoid, and ovotransferrin might be important reasons for thinning in hot spring egg white. SEM results indicated that the gel network gradually became regular and uniform, with large pores appearing on the cross-section and being pierced. Along with the decrease in intermolecular electrostatic repulsion, protein molecules gradually aggregated. The particle size gradually increased from 139.1 nm to 422.5 nm. Meanwhile, the surface hydrophobicity, and disulfide bond content gradually increased. These changes might be the reasons for thinning in hot spring egg white during storage. It can provide a new perspective for studying the thinning mechanism of weakly gelling egg whites.


Subject(s)
Egg White , Hot Springs , Proteome , Eggs , Ovomucin , Gels
8.
Int J Biol Macromol ; 246: 125711, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37414321

ABSTRACT

This study investigated the impact of varied pH treatments on the structural, emulsification, and interfacial adsorption properties of egg yolk. The solubility of egg yolk proteins decreased and then increased in response to pH changes, with a minimum value (41.95 %) observed at pH 5.0. The alkaline condition (pH 9.0) significantly impacted the secondary/tertiary structure of egg yolk, with the yolk solution displaying the lowest surface tension value (15.98 mN/m). Emulsion stability was found to be optimal when egg yolk was used as the stabilizer at pH 9.0, which corresponded to the more flexible diastolic structure, smaller emulsion droplets, increased viscoelasticity, and enhanced resistance to creaming. At pH 9.0, proteins exhibited a maximum solubility (90.79 %) due to their unfolded conformation, yet the protein adsorption content at the oil-water interface showed relatively low (54.21 %). At this time, electrostatic repulsion between the droplets and the spatial site barrier made by proteins that were unable to efficiently adsorb at the oil-water interface kept the emulsion stable. Moreover, it was found that different pH treatments could effectively regulate the relative adsorption contents of various protein subunits at the oil-water interface, and all proteins except livetin displayed good interfacial adsorption capacity at the oil-water interface.


Subject(s)
Egg Proteins , Water , Adsorption , Emulsions/chemistry , Hydrogen-Ion Concentration , Egg Proteins/chemistry , Water/chemistry , Egg Yolk/chemistry
9.
J Sci Food Agric ; 103(15): 7517-7528, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37440710

ABSTRACT

BACKGROUND: Lipid droplets (LDs) are important multifunctional organelles responsible for lipid metabolism of postmortem muscle. However, the dynamics in their building blocks (cores and layers) and phosphorylation of lipid droplet-related proteins (LDRPs) regulating meat lipolysis remain unknown at salt-stimulated conditions. RESULTS: LDRPs extracted from cured porcine biceps femoris (1% and 3% salt) were subjected to label-free quantitative phosphoproteomic analysis and LDs morphological validation. Results indicated that 3% salt curing significantly decreased triglyceride (TG) content with increase in glycerol and decrease in LDs fluorescence compared to 1% salt curing. Comparative phosphoproteomics showed that there were significant changes in phosphorylation at 386 sites on 174 LDRPs between assayed groups (P < 0.05). These differential proteins were mainly involved in lipid and carbohydrate metabolism. Curing of 3% salt induced more site-specific phosphorylation of perilipin 1 (PLIN1, at Ser81) and adipose triglyceride lipase (ATGL, at Ser399) than 1%, whereas the phosphorylation (at Ser600) of hormone-sensitive lipase (HSL) was up-regulated. Ultrastructure imaging showed that LDs were mostly associated with mitochondria, and the average diameter of LDs decreased from 2.34 µm (1% salt) to 1.73 µm (3% salt). CONCLUSION: Phosphoproteomics unraveled salt-stimulated LDRPs phosphorylation of cured porcine meat provoked intensified lipolysis. Curing of 3% salt allowed an enhanced lipolysis than 1% by up-regulating the phosphorylation sites of LDRPs and recruited lipases. The visible splitting of LDs, together with sarcoplasmic disorganization, supported the lipolysis robustness following 3% salt curing. The finding provides optimization ideas for high-quality production of cured meat products. © 2023 Society of Chemical Industry.


Subject(s)
Hamstring Muscles , Lipid Metabolism , Animals , Swine , Lipid Droplets/metabolism , Lipid Droplet Associated Proteins/metabolism , Lipolysis , Sodium Chloride/metabolism , Computational Biology
10.
Food Chem ; 424: 136380, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37201471

ABSTRACT

This study explored the effect of yolk sphere on gel state and taste differences between whole boiled egg yolk (WBEY) and stirred boiled egg yolks (SBEYs). Optical microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) indicated that the WBEY was formed via the accumulation of yolk spheres, whereas the SBEY was a gel with a tight and ordered microstructure. The stirring disrupted the yolk sphere structure, leading to a homogeneous distribution of proteins and lipids in SBEYs, and a cross-linked network in gel was established with higher hardness and springiness. In the oral sensation simulation, WBEY had a higher saliva adsorption capacity and frictional force to oral soft tissue during swallowing than SBEY. This work contributes to a deeper understanding of the gel structure and taste of egg yolk, and provides a theoretical basis for the research on the formation of the gritty taste of egg yolks.


Subject(s)
Egg Yolk , Eggs , Animals , Cytoplasm , Egg Yolk/chemistry , Microscopy, Electron, Scanning , Sensation
11.
Food Chem ; 419: 136031, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37004363

ABSTRACT

The purpose of this study was to investigate the mechanism for the differences in heat-induced gel properties of egg white proteins with different interior quality during ageing in laying hens. Quantitative proteomic analysis revealed that the abundance of ovotransferrin, avidin, mucin 5B, and clusterin increased with decreasing Haugh units (HU), leading to the transition from disorder to order in the secondary and tertiary structure of egg white proteins, with the burial of hydrophobic groups and a reduction in the negative charge on the protein surface, rendering the egg white protein solution aggregated. These changes would accelerate the rate of aggregation of egg white proteins during heating, resulting in the loss of orientation of the molecular chains, forming coarse and porous gel structures and poor gel properties. This research provides a new idea for improving the gelling properties of egg whites from lower interior quality during ageing in laying hens.


Subject(s)
Chickens , Hot Temperature , Animals , Female , Chickens/metabolism , Proteomics , Egg Proteins/metabolism , Aging , Diet , Animal Feed/analysis
12.
Food Res Int ; 167: 112658, 2023 05.
Article in English | MEDLINE | ID: mdl-37087208

ABSTRACT

The use of safe physical means to achieve egg yolk as natural carrier for active ingredients plays an important role in increasing the added value of egg yolk. In this paper, we prepared DHA-fortified egg yolk emulsion using high-speed shearing (HSS) only and HSS combined with high-pressure homogenization (HPH), respectively. HPH reduced particle size and zeta potential, allowing for better emulsion stability. After 14 days of storage, the encapsulation efficiency was 93.88% even with 15% (w/w) algae oil addition. Rheology analysis presented that HPH improve the viscoelasticity, indicating the enhancement of interaction force between droplets. Then, vaccum low-temperature spray drying (VLTSD) was used to produce powder, which allowed for minimal damage to the encapsulation structure according to scanning electron microscopy and the hydration properties of powder was improved. This work provides a new idea for using egg yolk to encapsulate DHA and improving the properties of egg yolk powder.


Subject(s)
Egg Yolk , Eggs , Egg Yolk/chemistry , Emulsions/chemistry , Powders/analysis , Rheology
13.
Foods ; 12(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36766060

ABSTRACT

Ovotransferrin (OVT) is a multi-functional protein showing over 50% homology with Bovine lactoferrin (BLF) and human lactoferrin (HLF), which have the potential to be a substitute for lactoferrin (LF) due to the limited production of LF. To explore the substitutability of OVT, the molecular properties and thermal stability of OVT, BLF and HLF were characterized because these properties will affect the processing quality and biological activities of protein products when exposed to different processing conditions (e.g., temperature, pH, ion strength). The results showed that although obviously different isoelectric point (5.31, 9.12 and 8.75 for OVT, BLF and HLF, respectively), particle size distribution and hydrophobicity were found, they exhibited good dispersity because of high potential value. They showed an endothermic peak at 80.64 °C, 65.71 °C and 90.01 °C, respectively, and the denaturation temperature varied at different pH and ionic strength. OVT and BLF were more susceptible to heating at pH 5.0 as reflected by the decline of denaturation temperature (21.78 °C shift for OVT and 5.81 °C shift for BLF), while HLF could remain stable. Compared with BLF, OVT showed higher secondary structure stability at pH 7.0 and 9.0 with heating. For example, the α-helix content of OVT changed from 20.35% to 15.4% at pH 7.0 after heating, while that of BLF changed from 20.05% to 6.65%. The increase on fluorescence intensity and redshifts on the maximum wavelength after heating indicated the changes of tertiary structure of them. The turbidity measurements showed that the thermal aggregation degree of OVT was lower than BLF and HLF at pH 7.0 (30.98%, 59.53% and 35.66%, respectively) and pH 9.0 (4.83%, 12.80% and 39.87%, respectively). This work demonstrated the similar molecular properties and comparable thermal stability of OVT to BLF and HLF, which can offer a useful reference for the substitute of LF by OVT.

14.
Food Chem ; 404(Pt A): 134510, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36240550

ABSTRACT

There is an urgent need to explore the salt penetration and water migration in the cooked salted egg yolk (CSEY) gel. The aim of this study was to investigate the effect of salt and water on the physicochemical, structural and flavor characteristics of CSEY gel stored at 25 °C. The hardness of the yolk increased significantly (608.0 g â†’ 2730.7 g) during storage. The results of LF-NMR showed that the free water content in the yolk gel was enhanced. The microstructure of CSEY could be observed by SEM, which showed that during storage, polyhedral particles were dispersed due to the heating process. In addition, ethyl acetate (71.9 %) was completely undetectable in the CSEY-21 d. In summary, the sample at and before 14 d of storage had good processing value. Therefore, this work would provide theoretical guidance for the low-sodium pickling of SEY (salted egg yolk) and its suitable storage methods.


Subject(s)
Egg Yolk , Water , Egg Yolk/chemistry , Water/analysis , Sodium Chloride/chemistry , Cooking , Sodium Chloride, Dietary/analysis
15.
Food Res Int ; 161: 111638, 2022 11.
Article in English | MEDLINE | ID: mdl-36192867

ABSTRACT

Bacterial pathogens have posed a serious threat to human health because they are difficult to be eliminated inside cells. Here, an effective design of poly(lactic-co-glycolic) (PLGA) nanoparticles (NPs) modified with antimicrobial peptides and loaded with gentamicin (Gen) was reported with enhanced antibacterial activity and cellular internalization ability. The results showed that the drug loading capacity and encapsulation efficiency of OVTp12-modified NPs were 7.55 % and 81.3 %, respectively. We observed that OVTp12 and OVTp12-modified NPs significantly increased the interaction with Staphylococcus aureus cells. Moreover, OVTp12-modified NPs showed an effective inhibitory effect on S. aureus with low cytotoxicity. The results of cell internalization indicated that OVTp12-modified NPs were markedly higher than that of unmodified nanoparticles when incubated with MC3T3-E1 cells. In conclusion, the bacterial cell-targeting ability of this antimicrobial peptide provides advantages for the treatment of intracellular bacterial infections.


Subject(s)
Nanoparticles , Polyglycolic Acid , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Humans , Lactic Acid , Peptides/pharmacology , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer , Staphylococcus aureus
16.
Foods ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36010434

ABSTRACT

Chicken egg whites contain hundreds of proteins, and are widely used in the food, biological and pharmaceutical industries. It is highly significant to study the separation and purification of egg white proteins. This review first describes the structures and functional properties of several major active proteins in egg whites, including ovalbumin, ovotransferrin, ovomucoid, lysozyme, ovomucin, ovomacroglobulin and avidin. Then, the common techniques (including precipitation, chromatography and membrane separation) and some novel approaches (including electrophoresis, membrane chromatography, aqueous two-phase system and molecular imprinting technology) for the separation and purification of egg white proteins broadly reported in the current research are introduced. In addition, several co-purification methods for simultaneous separation of multiple proteins from egg whites have been developed to improve raw material utilization and reduce costs. In this paper, the reported techniques in the last decade for the separation and purification of chicken egg white proteins are reviewed, discussed and prospected, aiming to provide a reference for further research on egg proteins in the future.

17.
Food Res Int ; 157: 111449, 2022 07.
Article in English | MEDLINE | ID: mdl-35761689

ABSTRACT

Myosin filament plays a critical role in water-trapping and thermodynamic regulation during processing of brined muscle foods. The redox state and availability of proteolytic/antioxidant enzymes affected by salt may change the ion-binding capacity of myosin consequently contributing to swelling and rehydration. Thus, this study investigated the impact of different salt content (0%, 1%, 2%, 3%, 4%, 5% NaCl) and oxidation in vitro (10 mM H2O2/ascorbate-based hydroxyl radical (OH)-generating system) on the oxidative stability, solubility/dispersion capacity, chymotrypsin digestibility, aggregation site and the microrheological properties of isolated porcine myosin. The result showed that, brining at 2% salt exposed more sulfhydryl groups and inhibited the formation of disulfide bond, whereby smaller dispersed structure (diameter within 10-50 nm) and higher Ca2+-ATPase activity of the denatured myosin were observed. Accordingly, gel electrophoresis showed that myosin S1 and HMM subunits were highly oxidized and susceptible to reversible assembles. Despite enhanced hydrophobic interactions between swelled myosin at 3% salt content, ≥4% salt greatly promoted the exposure/polarization of tryptophan and cross-linking structures, mainly occurring at myosin S2 portion. The results of micro-rheology proved that oxidized myosin formed a tighter heat-set network following rehydration at high ion strength (≥4% salt), suggesting an increased inter-droplet resistance and macroscopic viscosity. This work is expected to give some useful insights into improved texture and functionality of engineered muscle foods.


Subject(s)
Hydrogen Peroxide , Sodium Chloride , Animals , Myosins/chemistry , Oxidation-Reduction , Protein Isoforms , Swine
18.
Food Chem ; 385: 132708, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35306235

ABSTRACT

Carboxymethyl cellulose (CMC) films containing lysozyme (Lys) were prepared in this study and changes in properties of the films were investigated. Enhancement in mechanical properties was observed with increased Lys, maximum (0.05 g/100 mL) reached to 39.07 MPa (TS) and 25.04 % (EAB). Meanwhile, water resistance ability improved, the minimum (0.05 g/100 mL) reached to 0.42 g·mm·(m2·h·KPa)-1, 84.62 % of pure CMC film. Thermogravimetric test showed better thermal stability of films. Scanning electron microscope illustrated that few cracks on surface of films. Fourier Transform infrared spectroscopy supported that more intermolecular hydrogen between Lys and CMC was formed with increased Lys, yet keeping increasing formed less intermolecular hydrogen. X-ray Diffraction observed the aggregated Lys by crystal structure. Antibacterial test showed an inhibitory effect on two common food-borne pathogens. Weight loss experiment indicated that films reduced the dry consumption of meat. Overall, the modification of CMC film by adding Lys was effective.


Subject(s)
Anti-Bacterial Agents , Carboxymethylcellulose Sodium , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium/chemistry , Food Packaging/methods , Hydrogen , Muramidase , Spectroscopy, Fourier Transform Infrared
19.
Compr Rev Food Sci Food Saf ; 21(3): 2233-2252, 2022 05.
Article in English | MEDLINE | ID: mdl-35293118

ABSTRACT

Egg protein (EP) has a variety of functional properties, such as gelling, foaming, and emulsifying. The gel characteristics provide a foundation for applications in the food industry and research on EP. The proteins denature and aggregate to form a dense three-dimensional gel network structure, with a process influenced by protein concentration, pH, ion type, and strength. In addition, the gelation properties of EP can be altered to varying degrees by applying different treatment conditions to EP. Currently, modification methods for proteins include physical modification (heat-induced denaturation, freeze-thaw modification, high-pressure modification, and ultrasonic modification), chemical modification (glycosylation modification, phosphorylation modification, acylation modification, ethanol modification, polyphenol modification), and biological modification (enzyme modification). Pidan, salted eggs, egg tofu, and other egg products have unique sensory properties, due to the gel properties of EP. In accessions, EP has also been used as a new ingredient in food packaging and biopharmaceuticals due to its gel properties. This review will further promote EP gel research and provide guidance for its full application in many fields.


Subject(s)
Egg Proteins , Egg Proteins/chemistry , Gels/chemistry , Pressure
20.
Poult Sci ; 101(3): 101619, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34995877

ABSTRACT

It's a difficult task for researchers to identify the gender of chicken eggs by nondestructive approach in the early of incubation, which not only could reduce the cost of incubation, but also could improve the welfare of chicks. Therefore, SPME/GC-MS has been applied to investigate its potential as a nondestructive tool for characterizing the differences of odor between male and female chicken eggs during early of incubation and even before hatch. The results showed that more volatiles were found in female White leghorn eggs during early of incubation and 6,10-dimethyl-5,9-undecadien-2-one, 6-methyl-5-hepten-2-one, nonanal, decanal, octanal, 2-nonen-1-ol, etc. were important for the distinction of male and female White leghorn eggs during E1-E9 of incubation. 2-ethyl-1-hexanol; octanal, nonanal, 2,2,4-trimethyl-3-carboxyisopropyl pentanoic acid isobutyl ester; 2-nonen-1-ol, cyclopropanecarboxamide, heptadecane were correlated with gender of unhatched White leghorn, Hy-line brown and Jing fen eggs, respectively. Moreover, sex-related volatiles have been strongly influenced by incubation process and egg breed, and to be related to steroid hormone biosynthesis. What's more, this study enables us to develop a new visual for ovo sexing of chicken eggs and advances our understanding of the biological significance behind volatiles emitted from chicken eggs.


Subject(s)
Chickens , Odorants , Animals , Chemometrics , Eggs/analysis , Female , Gas Chromatography-Mass Spectrometry/veterinary , Male , Odorants/analysis , Ovum , Solid Phase Microextraction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...