Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chemosphere ; 353: 141556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412890

ABSTRACT

Mercury (Hg) is a global environmental concern that affects both humans and ecosystem. The comprehensive understanding of sources and dynamics is crucial for facilitating targeted and effective control strategies. Herein, a robust approach integrating Multivariate Statistics, Geostatistics, and Positive Matrix Factorization (PMF) was employed to quantitatively elucidate the distribution and sources of Hg in agricultural lands. Results indicated elevated Hg concentrations in the land with 74.46% of soils, including 84.85% of topsoil, 69.70% of subsoil, and 67.31% of deepsoil, exceeding risk screening value. Geoaccumulation Index of Hg in soil surpassed level Ⅱ with more than 50% of Hg in the residual fraction regardless of the layer or location. The levels of Hg in surface water for irrigation exhibited a negative correlation with the distance from the mine and a positive correlation with that in sediment (R2>0.78, p < 0.01), suggesting the downstream migration and remobilization from sediment. Source apportion revealed that human activities as primary contributors despite high variability across locations and soil layers. Contributions to downstream soil Hg from Natural Background (NB), Primary Ore Mining (OM), Agricultural Practices (AP), and Wastewater Irrigation (WI) were 15.5%, 83.1%, 1.3%, and 0.1%, respectively. A reliable approach for source apportionment of Hg in soil was suggested, demonstrating potential applicability in the risk management of Hg-contaminated sites.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Humans , Mercury/analysis , Soil , Ecosystem , Soil Pollutants/analysis , Environmental Monitoring/methods , Mining , Risk Assessment , China , Metals, Heavy/analysis
2.
J Environ Manage ; 354: 120419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422570

ABSTRACT

Modeling the long-term trends of contaminants in topsoil under controlled measures is critical for sustainable agricultural environmental management. Traditional mass balance equations cannot predict spatial variation and exchange flux of regional soil contaminants for it lacks a method of assigning input-output parameters to each simulated cell. To overcome this limitation, we allocate the estimated source contribution flux to the spatial grid cell in the regional chemical mass balance by integrated positive matrix factorization (P-RCMB) with historical trends quantification. Focusing on Cd and As, which are elements with elevated risks of food intake and volatilization/infiltration, the model is applied to 30 ha of agricultural land near the enterprise. Predictions indicate an additional 13.5% of the soil is contaminated, and approximately 2.57 ha may accrue after 100 years at the site, with an uncertainty range of 0.98-5.3 ha. Clean water irrigation (CWI) reduces contamination expansion by approximately 42%, including approximately 4813 g ha-1 yr-1 net As infiltration, playing a dominant role in preventing the formation of severely contaminated soil. Stop straw return, green fertilizers use, and reduced atmospheric deposition control the exchange flux of Cd (114.9 g ha-1 yr-1) in moderate/slight contamination areas. For the different contaminants' cumulative trends in dryland and paddy fields, achieving a net cumulative flux close to zero in marginally contaminated areas presents a viable approach to optimize current emission standards. if trade-off straw removal and additional fertilizer inputs, a straw return rate of approximately 40% in Cd-contaminated soil will yield overall benefits. This model contributes valuable insights and tools for policymaking in contaminated land sustainable utilization and emission standard optimization.


Subject(s)
Soil Pollutants , Soil , Cadmium , Soil Pollutants/analysis , Agriculture , Environmental Pollution/prevention & control , Fertilizers/analysis
3.
Sci Total Environ ; 919: 170908, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350574

ABSTRACT

Remediation of contaminated soil at industrial sites has become a challenge and an opportunity for sustainable urban land use, considering the substantial secondary impacts resulting from remediation activities. The design of soil remediation strategies for multi-site remediation from a regional perspective is of great significance for cities with a large number of brownfields. Centralized and decentralized facilities have been studied in different environmental fields, yet limited research has focused on centralized soil remediation, specifically the treatment of contaminated soil from different sites through the construction of shared soil treatment facilities. This study proposes a framework for comparing centralized and decentralized strategies for contaminated soil remediation based on the integration of life-cycle sustainability assessment and multi-objective optimization. With Zhuzhou, an industrial city in China, serving as an example, results show that after optimization, the centralized scenario can reduce total environmental impacts by 25 %-41 %. In addition, the centralized scenario can reduce economic costs by 27 %-39 %, saving up to 176 million USD. The advantages of the centralized soil remediation strategy include: (1) increased use of soil washing, (2) reduced use of off-site disposal, and (3) reduced construction and efficient utilization of soil treatment facilities. In conclusion, the centralized strategy is relatively suitable for cities or areas with a large number of medium or small-sized contaminated sites. The built framework can quantitatively evaluate multiple sites soil remediation at both the city and individual site level, allowing for a straightforward and objective comparison with the optimal remediation design.

4.
Environ Pollut ; 336: 122413, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598928

ABSTRACT

The Minamata Convention on Mercury has mandated a renewed global effort to tackle Hg pollution. The present study evaluates Hg pollution at a primary Hg production site exploited since the Qin Dynasty (200s BC), with intensive industrial scale production over the past four decades. This single location accounts for over 95% total Hg production in China in recent years. To assess the environmental risk and effectiveness of recently implemented control measures, we collected 90 soil samples, 60 plant tissue samples, 47 sediment samples, and 47 river water samples from the site and its vicinity. A site-specific conceptual site model was established based on the sources, migration transformation pathways of Hg pollutant and its exposure scenarios. The maximum soil Hg concentration reached 10,451 mg kg-1, posing a high health and ecological risk. Vegetable and crop Hg concentrations outside the site reached 0.23 mg kg-1 in rice grains and 4.24 mg kg-1 in green onion. The highest health risk, with a hazard quotient of 130.66, was observed in the Ore Storage Site, which reduced to 17.14 when Hg bioavailability was considered. Risk control measures implemented in recent years included a stormwater collection system and capping of the tailing pond area with clean imported soil. These measures were generally successful; however, Hg in the tailings were found to be contaminating the imported surficial soil due to rainfall saturation and upward migration, suggesting a need for long-term post remedial site monitoring and maintenance. We also found that mining and smelting activities have contaminated a 6 km stretch of a nearby river, with sediment Hg concentrations reaching 2819 mg kg-1, and water column concentrations reaching 193.21 ng L-1. The sediment and water concentrations are highly correlated (R2 = 0.78), suggesting that, with risk control measures in place, a reservoir of Hg in polluted river sediment is now driving pollution in the water column. This work demonstrates that primary Hg mining has caused widespread and serious soil and water pollution. Risk control measures can reduce human health and ecological risks, but robust monitoring and maintenance are required for remediation to be effective in the long-term.

5.
Environ Int ; 177: 108019, 2023 07.
Article in English | MEDLINE | ID: mdl-37301047

ABSTRACT

Grasslands provide a range of valuable ecosystem services, but they are also particularly fragile ecosystems easily threatened by human activities, such as long-term open-pit mining and related industrial activities. In grassland area, dust containing heavy metal(loid)s generated by mines may further migrate to remote places, but few studies have focused on the long-range transport of contaminants as an important pollution source. In the present study, one of the largest and most intact grassland ecosystems, the Mongolian-Manchurian steppe, was selected to investigate its pollution status and track potential sources. A total of 150 soil samples were collected to explore reginal distribution of nine heavy metal(loid)s that has potential risk in grassland. We conducted a combined multi-variant analysis of positive matrix factorization (PMF) and machine learning, which foregrounded the source of long-range transport of contaminants and inspired the hypothesis of a novel stochastic model to describe contaminants distribution. Results showed four different sources accounting for 44.44% (parent material), 20.28% (atmospheric deposition), 20.39% (farming), and 14.89% (transportation) of the total concentration, respectively. Factor 2 indicated that coal surface mining lead to a significant enrichment of As and Se with their concentration far above the global average level, which was different from other reported grassland areas. Machine learning results further confirmed that atmospheric and topographic features were their contamination controlling factors. The model results proposed that As, Se and Cu released by surface mining will be transported over long distance under prevailing monsoon, until finally deposited in the windward slope of mountain due to terrain obstruction. The long-range transport by wind and deposition of contaminants may be a prevailing phenomenon in temperate grassland, making it a pollution source that cannot be ignored. Evidence from this study reveals the urgency of precautions for fragile grassland ecosystems around industrial areas and provides a basis for its management and risk control policies.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Ecosystem , Grassland , Soil , Wind , Soil Pollutants/analysis , Metals, Heavy/analysis , China , Environmental Monitoring , Risk Assessment
6.
Sci Total Environ ; 887: 164144, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37182765

ABSTRACT

Small playgrounds situated within residential communities are popular recreational areas. However, heavy metal(loid)s (HMs) in soil or equipment dust may pose a public health risk. This study provides a comprehensive assessment of the health risk associated with HMs exposure at residential playgrounds in cities, a field that has not been thoroughly investigated previously. 70 soil and 70 equipment dust samples were collected from 30 urban and 40 suburban playgrounds in Beijing. Results indicated significant enrichment of Cu, As, and Ni in the soil with Enrichment Factors (EFs) >5 from both anthropogenic and lithogenic sources. Correlation analyses showed that the levels of Be, Cr, Mn, Co, Ni in soil and Be, Mn, As, Cd in dust were positively correlated with the distance to the nearest highway, with p-values < 0.01. Enrichment and correlation analyses contributed to a better understanding of the sources and transport pathways of HMs in urban environment. Based on a site-specific Conceptual Site Model (CSM), the carcinogenic risks (CRs) and Hazard Quotients (HQs) were quantified for residents as the ratio of HMs exposure to reference doses. Risk assessment indicated the mean predicted CR for children and adults exposed to soil was 3.75 × 10-6 and 5.29 × 10-6, respectively, while that at dust exposure scenarios was lower, at 2.47 × 10-6 and 3.49 × 10-6, respectively, all of which were at the upper end of U.S. EPA's acceptable criteria of 1 × 10-6 to 1 × 10-4. Among the HMs, As and Ni were identified as the priority control contaminants due to significant contribution to CRs. Furthermore, the spatial distribution revealed an increasing trend in health risk from the urban center to the suburbs. This study emphasizes the need for effective measures to mitigate potential health risk and enhance the safety of recreational areas, particularly for susceptible individuals.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Beijing , Dust/analysis , Environmental Monitoring/methods , Soil , Soil Pollutants/analysis , Metals, Heavy/analysis , China , Cities , Risk Assessment/methods , Carcinogens/analysis
7.
Chemosphere ; 308(Pt 1): 136292, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36064023

ABSTRACT

Leachable metal in abandoned mine tailings may be toxic to vegetation, affecting effective ecological restoration. In this study, MRB was synthesized through MgCl2·6H2O wet impregnation followed by duplicate slow pyrolysis. Manganese tailings were mixed with MRB, rice husk biochar (RB), and MgO at a dosage of 0-5%, followed by 90-day incubation. Toxicity characteristic leaching procedure and sequential leaching were used to analyze the leachability and species of Mn in tailings, while a stabilization mechanism was proposed with the support of the characterization of the tailings before and after amendment. Results suggested MRB addition significantly decreased leachable Mn by 63.8%, reducing from 59.88 mg/L to 21.68 mg/L, while only a 14.39% reduction was achieved by rice husk biochar (RB). The sharp decline of leachable Mn after 90-day mixing was contributed by the transformation from labile to stable fractions. A microporous biochar matrix along with the uniform dispersion of MgO active component were both responsible for the better Mn stabilization. Only less than 10% of the variation in substrate pH was observed with the increase of MgO loading or incubation time. Linear correlation analyses indicated substrate pH's strongl negative relationship with leachable Mn and moderately positive relationship with residual fraction. Characterization results revealed that MRB exhibited different stabilization mechanisms in mine tailings, where Mn was likely to be stabilized by direct interaction with active MgO or indirect alkaline precipitation to form stable MgMn2O4, Mn(CH3COO)2, and MnO(OH)2. This work validated the promoting potential of recycling agricultural biomass waste for the amendment of manganese mine tailings.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Charcoal , Magnesium Oxide , Manganese/chemistry , Soil Pollutants/analysis
8.
Environ Sci Technol ; 55(17): 12032-12042, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34372658

ABSTRACT

Agricultural land degradation is posing a serious threat to global food security. Restoration of the degraded land has traditionally been viewed as an inherently sustainable practice; however, restoration processes render consequential environmental impacts which could potentially exceed the benefit of restoration itself. In the present study, an integrated life cycle assessment analysis was conducted to evaluate life cycle primary, secondary, and tertiary impacts associated with the restoration of the contaminated agricultural land. The results demonstrated the importance of including spatially differentiated impacts associated with managing the land and growing crops. Comparing four risk management scenarios at a contaminated field in Southern China, it was found that the primary and secondary impacts followed the order of no action > chemical stabilization > phytoextraction > alternative planting. However, when tertiary impacts were taken into account, alternative planting rendered much higher footprint in comparison with phytoextraction and chemical stabilization, which provides evidence against an emerging notion held by some policy makers. Furthermore, assuming that the loss of the rice paddy field in Southern China is compensated by the deforested land in the Amazon rainforest, the total global environmental impact would far exceed that of no action, resulting in 687 ton CO2-e ha-1 of climate change impact. Overall, the present study provides new research findings to support more holistic policy making and also sheds lights on the future development of various restoration technologies.


Subject(s)
Environmental Restoration and Remediation , Agriculture , Animals , China , Environmental Pollution , Life Cycle Stages , Soil
9.
J Hazard Mater ; 407: 124812, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33340973

ABSTRACT

Metals in soil are potentially harmful to humans and ecosystems. Stable isotope measurement may provide "fingerprint" information on the sources of metals. In light of the rapid progress in this emerging field, we present a state-of-the-art overview of how useful stable isotopes are in soil metal source identification. Distinct isotope signals in different sources are the key prerequisites for source apportionment. In this context, Zn and Cd isotopes are particularly helpful for the identification of combustion-related industrial sources, since high-temperature evaporation-condensation would largely fractionate the isotopes of both elements. The mass-independent fractionation of Hg isotopes during photochemical reactions allows for the identification of atmospheric sources. However, compared with traditionally used Sr and Pb isotopes for source tracking whose variations are due to the radiogenic processes, the biogeochemical low-temperature fractionation of Cr, Cu, Zn, Cd, Hg and Tl isotopes renders much uncertainty, since large intra-source variations may overlap the distinct signatures of inter-source variations (i.e., blur the source signals). Stable isotope signatures of non-metallic elements can also aid in source identification in an indirect way. In fact, the soils are often contaminated with different elements. In this case, a combination of stable isotope analysis with mineralogical or statistical approaches would provide more accurate results. Furthermore, isotope-based source identification will also be helpful for comprehending the temporal changes of metal accumulation in soil systems.

10.
Sci Total Environ ; 672: 551-562, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30965267

ABSTRACT

China is facing a groundwater depletion and deterioration crisis, culminating from long-term over-exploitation and groundwater contamination. Aggravating factors include population growth, unprecedented urbanization and climate change. Sustainable groundwater management is called for, however, a valid means for a national-scale assessment of groundwater resource sustainability does not currently exist. Here we present a drivers-pressures-states-impact-response (DPSIR) assessment framework. Based on this framework, groundwater sustainability indices for mainland China's 31 provinces and municipalities were derived, with an average score of 59.5 out of 100, ranging from 47.3 for Tianjin to 72.9 for Tibet. We found that due to fewer Drivers and better States, groundwater resources in southern China are far more sustainable than those in the northern and eastern areas. An appraisal of subcategories shed light on the importance of affording attention to externalities such as societal, economic and environmental factors, which are interrelated as complex systems. Based on the assessment findings, implications for policy and decision-making suggestions for sustainable management of China's groundwater resources are put forward.

11.
Environ Pollut ; 249: 527-534, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30928524

ABSTRACT

Microplastics (MPs) are an emerging concern and potential risk to marine and terrestrial environments. Surface soils are reported to act as a sink. However, MP vertical mobility in the subsurface remains uncertain due to a lack of scientific data. This study focused on MP penetration in sand soil column experiments. Here we report the mobility of five different MPs, which consisted of polyethylene (PE) and polypropylene (PP) particles of various sizes and densities. We observed that the smallest sized PE MPs (21 µm) had the greatest movement potential. Moreover, it was found that when these MPs were subjected to greater numbers of wet-dry cycles, the penetration depth significantly increased, with an apparent linear relationship between depth and wet-dry cycle number (r2 = 0.817). In comparison, increasing the volume of infiltration liquid or the surface MP concentration had only negligible or weak effects on migration depth (r2 = 0.169 and 0.312, respectively). Based on the observed wet-dry cycle trend, we forecast 100-year penetration depths using weather data for 347 cities across China. The average penetration depth was calculated as 5.24 m (95% CI = 2.78-7.70 m), with Beijing Municipality and Hebei, Henan and Hubei provinces being the most vulnerable to MP vertical dispersion. Our results suggest that soils may not only represent a sink for MPs, but also a feasible entryway to subsurface receptors, such as subterranean fauna or aquifers. Finally, research gaps are identified and suggested research directions are put forward to garner a better understanding MP vertical migration in soil.


Subject(s)
Environmental Pollution/analysis , Groundwater/chemistry , Plastics/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Beijing , China , Nanostructures/analysis , Polyethylene/analysis , Polypropylenes/analysis , Silicon Dioxide/analysis
12.
Sci Total Environ ; 663: 568-579, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30726765

ABSTRACT

Urban industrialization has caused severe land contamination at hundreds of thousands of sites in cities all around the world, posing a serious health risk to millions of people. Many contaminated brownfield sites are being left abandoned due to the high cost of remediation. Traditional physical and chemical remediation technologies also require high energy and resource input, and can result in loss of land functionality and cause secondary pollution. Nature-based solutions (NBS) including phytoremediation and conversion of brownfield sites to public greenspaces, holds much promise in maximizing a sustainable urban renaissance. NBS is an umbrella concept that can be used to capture nature based, cost effective and eco-friendly treatment technologies, as well as redevelopment strategies that are socially inclusive, economically viable, and with good public acceptance. The NBS concept is novel and in urgent need of new research to better understand the pros and cons, and to enhance its practicality. This review article summarizes NBS's main features, key technology choices, case studies, limitations, and future trends for urban contaminated land remediation and brownfield redevelopment.

13.
Environ Int ; 124: 320-328, 2019 03.
Article in English | MEDLINE | ID: mdl-30660845

ABSTRACT

Potentially toxic elements such as heavy metals are ubiquitous in the environment. Risk-based environmental management relies upon identifying pollution sources, pathways, and the exposed population. In a Chinese urban setting, many residents live in high-rise buildings without private gardens. Therefore, the main residential risk of exposure to contaminated soils and dusts may be associated with public open spaces. As children are the most vulnerable receptor, playgrounds represent an important yet often overlooked exposure point. The present study assessed plausible sources of heavy metals at children's playgrounds in a representative metropolitan environment. Soil and equipment dust samples were collected from 71 playgrounds across Beijing, which were analyzed for 11 different heavy metals. Principal component analysis (PCA) was used to identify the latent constructs which control heavy metal variability and reflect potential sources. Cluster analysis (CA) was conducted to group sampled locations, which provided further insights on plausible sources. The main factors extracted from the PCA were then subject to geostatistical analysis. The systematic combination of GIS with multivariate statistical analysis proved valuable for elucidating anthropogenic and natural sources. Elevated Be, V, Cr, Mn, Co, Ni, As in playground soils were found to derive mainly from the natural background (spatial autocorrelation = 2 km), while elevated Cu and Pb was attributed to traffic activities (spatial autocorrelation = 17 km), especially along the routes of Beijing's inner ring-roads, the major roads toward the northwest and northeast, and the international airport. These results suggest that heavy metals in playground equipment dust may derive mainly from atmospheric deposition of air pollution of both natural and anthropogenic origin (spatial autocorrelation = 11-13 km). Among them, Be, V, Mn, Co, Cu, As, Pb were attributed to atmospheric pollution deriving from the north of Beijing, brought by the prevailing northern wind in the winter season; whereas, Cr and Ni may possibly be brought from the southeast by the summer season winds. Knowledge of anthropogenic vs. natural origins of heavy metals in playgrounds is critical in assessing health impact and designing policy instruments for metropolitan areas.


Subject(s)
Dust/analysis , Metals, Heavy/analysis , Parks, Recreational , Soil Pollutants/analysis , Beijing , Child , Cluster Analysis , Environmental Monitoring/methods , Geographic Information Systems , Humans , Multivariate Analysis , Seasons , Soil
14.
Environ Pollut ; 245: 363-370, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448506

ABSTRACT

Lead contamination is widespread across China, posing a serious public health concern. In quantifying child lead exposure, established health risk assessment (HRA) approaches often take into account residential soil lead levels. However, this may not constitute a significant exposure source for children in urban mainland China, where the population mainly dwell in high-rise buildings without back or front yards. In this setting, children's playgrounds may represent a more probable exposure source. The present study analyzed lead levels in settled dust on playground equipment and in surficial soils at 71 playgrounds in Beijing, China. Our results reveal that the average playground dust lead concentration was 80.5 mg/kg, more than twice the average soil lead concentration of 36.2 mg/kg. It was found that there are differences in statistical and spatial distributions for lead in playground dust and soils. Lead levels in equipment dust were largely consistent across Beijing, with elevated levels detected at locations in the main city area, the newly developed Tongzhou District, and the rural counties. Whereas average soil lead concentrations were higher at playgrounds in the main city area than other areas of Beijing. Statistical analysis suggests that the lead content in dust and soil may derive from different natural and anthropogenic sources. Equipment dust lead may be associated with long-distance atmospheric transportation and deposition. Whereas lead in soil is more likely to be associated with local traffic. This study also found that, in certain areas of Beijing, the risk of blood lead levels (BLLs) exceeding safe levels was up to 6 times higher when based on dust exposure than when based on playground soil exposure. The results of this study suggests that HRA undertaken for children in urban mainland China should pay closer attention to children's playgrounds as a lead exposure source, and, in particular, playground equipment dust.


Subject(s)
Dust/analysis , Environmental Monitoring/methods , Lead/analysis , Parks, Recreational/standards , Soil Pollutants/analysis , Soil/chemistry , Beijing , Child , China , Housing/standards , Humans , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...