Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 85(11): 1538-1552, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35723555

ABSTRACT

ABSTRACT: This multi-institutional study assessed the efficacy of Enterococcus faecium NRRL B-2354 as a nonpathogenic Salmonella surrogate for thermal processing of nonfat dry milk powder, peanut butter, almond meal, wheat flour, ground black pepper, and date paste. Each product was analyzed by two laboratories (five independent laboratories total), with the lead laboratory inoculating (E. faecium or a five-strain Salmonella enterica serovar cocktail of Agona, Reading, Tennessee, Mbandaka, and Montevideo) and equilibrating the product to the target water activity before shipping. Both laboratories subjected samples to three isothermal treatments (between 65 and 100°C). A log-linear and Bigelow model was fit to survivor data via one-step regression. On the basis of D80°C values estimated from the combined model, E. faecium was more thermally resistant (P < 0.05) than Salmonella in nonfat dry milk powder (DEf-80°C, 100.2 ± 5.8 min; DSal-80°C, 28.9 ± 1.0 min), peanut butter (DEf-80°C, 133.5 ± 3.1 min; DSal-80°C, 57.6 ± 1.5 min), almond meal (DEf-80°C, 34.2 ± 0.4 min; DSal-80°C, 26.1 ± 0.2 min), ground black pepper (DEf-80°C, 3.2 ± 0.8 min; DSal-80°C, 1.5 ± 0.1 min), and date paste (DEf-80°C, 1.5 ± 0.0 min; DSal-80°C, 0.5 ± 0.0 min). Although the combined laboratory D80°C for E. faecium was lower (P < 0.05) than for Salmonella in wheat flour (DEf-80°C, 9.4 ± 0.1 min; DSal-80°C, 10.1 ± 0.2 min), the difference was ∼7%. The zT values for Salmonella in all products and for E. faecium in milk powder, almond meal, and date paste were not different (P > 0.05) between laboratories. Therefore, this study demonstrated the impact of standardized methodologies on repeatability of microbial inactivation results. Overall, E. faecium NRRL B-2354 was more thermally resistant than Salmonella, which provides support for utilizing E. faecium as a surrogate for validating thermal processing of multiple low-moisture products. However, product composition should always be considered before making that decision.


Subject(s)
Enterococcus faecium , Prunus dulcis , Colony Count, Microbial , Flour , Food Handling/methods , Food Microbiology , Hot Temperature , Powders , Salmonella/physiology , Triticum , Water/analysis
2.
J Food Prot ; 81(9): 1411-1417, 2018 09.
Article in English | MEDLINE | ID: mdl-30059253

ABSTRACT

Salmonella can survive in low-moisture, high-protein, and high-fat foods for several years. Despite nationwide outbreaks and recalls due to the presence of Salmonella in low-moisture foods, information on thermal inactivation of Salmonella in these products is limited. This project evaluated the impact of water activity (aw), temperature, and food composition on thermal inactivation of Salmonella enterica serovar Agona in defined high-protein and high-fat model food matrices. Each matrix was inoculated with Salmonella Agona and adjusted to obtain a target aw, ranging from 0.50 to 0.98. Samples were packed into aluminum test cells and heated (52 to 90°C) under isothermal conditions. Survival of Salmonella Agona was detected on tryptic soy agar with 0.6% yeast extract. Complex influences by food composition, aw, and temperature resulted in significantly different ( P < 0.05) thermal resistance of Salmonella for the conditions tested. It was estimated that the same point temperatures at which the D-values of the two matrices at each aw (0.63, 0.73, 0.81, and 0.90) were identical were 79.48, 71.28, 69.62, and 38.42°C, respectively. Above these temperatures, the D-values in high-protein matrices were larger than the D-values in high-fat matrices at each aw. Below these temperatures, the inverse relationship was observed. A correlation between temperature and aw existed on the basis of the level of fat or protein in the food, showing that these compositional factors must be accounted for when predicating thermal inactivation of Salmonella in foods.


Subject(s)
Food Microbiology , Hot Temperature , Salmonella enterica , Water , Colony Count, Microbial , Salmonella , Salmonella enterica/growth & development , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...