Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 14: 870326, 2022.
Article in English | MEDLINE | ID: mdl-35795238

ABSTRACT

In an increasingly aged global population, achieving healthy life expectancy through natural and safe drug interventions is highly desirable. Here we show that total ginsenosides (TGGR), the main active components in the traditional Chinese medicine, ginseng, promote longevity across species. In Drosophila, an intriguing effect of TGGR on lifespan was the relatively narrow treatment window to elicit long-term benefits. TGGR administration during early adulthood, and especially during midlife, was sufficient to extend lifespan in both sexes. TGGR did not increase lifespan by reducing food intake or reproductive capacity; rather, TGGR increased the fertility of male Drosophila. TGGR augmented healthspan readouts associated with youth and with healthy aging, such as motility, intestinal barrier integrity, and biorhythm homeostasis. TGGR treatment also improved some types of stress resistance in both sexes, including increased tolerance to starvation and oxidation, and shifting "aged" gene expression patterns toward "healthy" patterns seen in the young. Gene expression, pharmacological and genetic epistatic analyses demonstrated that TGGR effects require normal expression of genes involved in insulin, TOR and MAPK signaling. The positive effects of TGGR on both healthspan and lifespan, coupled with its mechanism of action via evolutionarily conserved signaling pathways, demonstrate it to be a promising anti-aging drug.

2.
Cancer Sci ; 111(7): 2400-2412, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32391593

ABSTRACT

Escape of cancer cells from chemotherapy is a problem in the management of cancer patients. Research on chemotherapy resistance has mainly focused on the heterogeneity of cancer cells, multiple gene mutations, and quiescence of malignant cancer cells. However, some studies have indicated that interactions between cancer cells and vascular cells promote resistance to chemotherapy. Here, we established mouse leukemia models using the cell lines THP-1 or MEG-1. These were derived from acute and chronic myeloid leukemias, respectively, and highly expressed DNA replication factor PSF1, a member of the GINS complex. We found that, after anti-cancer drug administration, surviving GFP-positive leukemia cells in the bone marrow were located adjacent to blood vessels, as previously reported in a subcutaneous solid tumor transplantation model. Treating THP-1 and MEG-1 cells with anti-cancer drugs in vitro revealed that those most strongly expressing PSF1 were most chemoresistant, suggesting that PSF1 induces not only cell cycle progression but also facilitates cell survival. Indeed, when PSF1 expression was suppressed by shRNA, the growth rate was reduced and cell death was enhanced in both cell lines. Furthermore, PSF1 knockdown in leukemia cells led to a change in their location at a distance from the blood vessels in a bone marrow transplantation model. These findings potentially reflect a mechanism of escape of leukemic cells from chemotherapy and suggest that PSF1 may be a possible therapeutic target to enhance the effect of chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Cell Cycle/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression , Leukemia/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Knockout , Xenograft Model Antitumor Assays
3.
J Biochem ; 166(3): 245-258, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31102532

ABSTRACT

Therapeutic proteins are a developing part of the modern biopharmaceutical industry, providing novel therapies to intractable diseases including cancers and autoimmune diseases. The human embryonic kidney 293 (HEK293) cell line has been widely used to produce recombinant proteins in both basic science and industry. The heterogeneity of glycan structures is one of the most challenging issues in the production of therapeutic proteins. Previously, we knocked out genes encoding α1,2-mannosidase-Is, MAN1A1, MAN1A2 and MAN1B1, in HEK293 cells, establishing a triple-knockout (T-KO) cell line, which produced recombinant protein with mainly high-mannose-type N-glycans. Here, we further knocked out MAN1C1 and MGAT1 encoding another Golgi α1,2-mannosidase-I and N-acetylglucosaminyltransferase-I, respectively, based on the T-KO cells. Two recombinant proteins, lysosomal acid lipase (LIPA) and immunoglobulin G1 (IgG1), were expressed in the quadruple-KO (QD-KO) and quintuple-KO (QT-KO) cell lines. Glycan structural analysis revealed that all the hybrid-type and complex-type N-glycans were eliminated, and only the high-mannose-type N-glycans were detected among the recombinant proteins prepared from the QD-KO and QT-KO cells. Overexpression of the oncogenes MYC and MYCN recovered the slow growth in QD-KO and QT-KO without changing the glycan structures. Our results suggest that these cell lines could be suitable platforms to produce homogeneous therapeutic proteins.


Subject(s)
Genetic Engineering , Mannose/chemistry , Mannose/genetics , Polysaccharides/chemistry , Polysaccharides/genetics , Carbohydrate Conformation , Glycosylation , HEK293 Cells , Humans , Mannose/metabolism , Phenotype , Polysaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
J Biol Chem ; 293(15): 5572-5584, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29475941

ABSTRACT

Recombinant therapeutic proteins are becoming very important pharmaceutical agents for treating intractable diseases. Most biopharmaceutical proteins are produced in mammalian cells because this ensures correct folding and glycosylation for protein stability and function. However, protein production in mammalian cells has several drawbacks, including heterogeneity of glycans attached to the produced protein. In this study, we established cell lines with high-mannose-type N-linked, low-complexity glycans. We first knocked out two genes encoding Golgi mannosidases (MAN1A1 and MAN1A2) in HEK293 cells. Single knockout (KO) cells did not exhibit changes in N-glycan structures, whereas double KO cells displayed increased high-mannose-type and decreased complex-type glycans. In our effort to eliminate the remaining complex-type glycans, we found that knocking out a gene encoding the endoplasmic reticulum mannosidase I (MAN1B1) in the double KO cells reduced most of the complex-type glycans. In triple KO (MAN1A1, MAN1A2, and MAN1B1) cells, Man9GlcNAc2 and Man8GlcNAc2 were the major N-glycan structures. Therefore, we expressed two lysosomal enzymes, α-galactosidase-A and lysosomal acid lipase, in the triple KO cells and found that the glycans on these enzymes were sensitive to endoglycosidase H treatment. The N-glycan structures on recombinant proteins expressed in triple KO cells were simplified and changed from complex types to high-mannose types at the protein level. Our results indicate that the triple KO HEK293 cells are suitable for producing recombinant proteins, including lysosomal enzymes with high-mannose-type N-glycans.


Subject(s)
Gene Expression , Gene Knockdown Techniques , Golgi Apparatus/enzymology , Mannosidases , Glycosylation , Golgi Apparatus/genetics , HEK293 Cells , Humans , Mannosidases/genetics , Mannosidases/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...