Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antib Ther ; 7(1): 67-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38371955

ABSTRACT

Background: Lyophilized drug products with high protein concentration often perform long reconstitution time, which is inconvenient for clinical use. The objective of this work is to achieve short reconstitution time with multiple and combined strategies. Methods: Here, we describe the following approaches that lead to reduction of reconstitution time, including adding annealing step, decreasing headspace pressure, decreasing protein concentration with reducing diluent volume, increasing high surface-area-to-height ratio of the cakes, increasing frequency of swirling and diluent temperature. Results: Among these strategies, reducing diluent volume to achieve high protein concentration and reducing headspace pressure show markedly reduction of reconstitution time. Moreover, we propose combined strategies to mitigate the reconstitution time, at the same time, to achieve same target dose in clinics. Conclusions: Therefore, this paper provides insights on the application of multiple strategies to accelerate the reconstitution of lyophilized drug products with high concentration, and facilitates their widespread clinical application.

2.
J Pharm Sci ; 113(6): 1478-1487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246363

ABSTRACT

Vaccine manufacturing is one of the most challenging and complex processes in pharmaceutical industry, and the process control strategy is critical for the safety, effectiveness, and consistency of a vaccine. The efficacy of aluminum salt adjuvant on vaccines strongly depends on its physicochemical properties, such as size, structure, surface charge, etc. However, stresses during the vaccine manufacturing may affect the stability of adjuvant. In this study, the impacts of cold/thermal stress, autoclaving, pumping, mixing, and filling shear stress on the physicochemical properties of aluminum hydroxide (AH) adjuvant were evaluated as part of the manufacturing process development. The results showed that the autoclaving process would slightly influence the structure and properties of the investigated AH adjuvant, but thermal incubation at 2-8 °C, 25 °C and 40 °C for 4 weeks did not. However, -20 °C freezing AH adjuvant led to the adjuvant agglomeration and rapid sedimentation. For the high shear stress study with mixing at 500 rpm in a 1-L mixing bag and pumping at 220 rpm for up to 24 h, the average particle dimension of the bulk AH adjuvant decreased, along with decreasing protein adsorption ratio. The studies indicate that various stresses during manufacturing process could affect the structure and physicochemical properties of AH adjuvant, which calls for more attention on the control of adjuvant process parameters during manufacturing.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Vaccines , Aluminum Hydroxide/chemistry , Vaccines/chemistry , Adjuvants, Immunologic/chemistry , Particle Size , Drug Stability
3.
Bioconjug Chem ; 27(3): 604-15, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26829368

ABSTRACT

The impact of drug loading and distribution on higher order structure and physical stability of an interchain cysteine-based antibody drug conjugate (ADC) has been studied. An IgG1 mAb was conjugated with a cytotoxic auristatin payload following the reduction of interchain disulfides. The 2-D LC-MS analysis shows that there is a preference for certain isomers within the various drug to antibody ratios (DARs). The physical stability of the unconjugated monoclonal antibody, the ADC, and isolated conjugated species with specific DAR, were compared using calorimetric, thermal, chemical denaturation and molecular modeling techniques, as well as techniques to assess hydrophobicity. The DAR was determined to have a significant impact on the biophysical properties and stability of the ADC. The CH2 domain was significantly perturbed in the DAR6 species, which was attributable to quaternary structural changes as assessed by molecular modeling. At accelerated storage temperatures, the DAR6 rapidly forms higher molecular mass species, whereas the DAR2 and the unconjugated mAb were largely stable. Chemical denaturation study indicates that DAR6 may form multimers while DAR2 and DAR4 primarily exist in monomeric forms in solution at ambient conditions. The physical state differences were correlated with a dramatic increase in the hydrophobicity and a reduction in the surface tension of the DAR6 compared to lower DAR species. Molecular modeling of the various DAR species and their conformers demonstrates that the auristatin-based linker payload directly contributes to the hydrophobicity of the ADC molecule. Higher order structural characterization provides insight into the impact of conjugation on the conformational and colloidal factors that determine the physical stability of cysteine-based ADCs, with implications for process and formulation development.


Subject(s)
Cysteine/chemistry , Immunoconjugates/chemistry , Pharmaceutical Preparations/administration & dosage , Calorimetry, Differential Scanning , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , Spectrometry, Fluorescence
4.
J Pharm Sci ; 104(11): 3770-3781, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26205044

ABSTRACT

Evaluation of the physical characteristics of vaccines formulated in the presence of adjuvants, such as aluminum salts (Alum), is an important step in the development of vaccines. Depending on the formulation conditions and the associated electrostatic interactions of the adjuvant particles, the vaccine suspension may transition between flocculated and deflocculated states. The impact of practical formulation parameters, including pH, ionic strength, and the presence of model antigens, has been correlated to the sedimentation behavior of aluminum phosphate suspensions. A novel approach for the characterization of suspension properties of Alum has been developed to predict the flocculated state of the system using a sedimentation analysis-based tool (Turbiscan®). Two sedimentation parameters, the settling onset time (Sonset) and the sedimentation volume ratio (SVR) can be determined simultaneously in a single measurement. The results demonstrate the suspension characteristics to be significantly altered by solution conditions (pH and ionic strength) and the charge state of bound antigens. Formulation conditions that promote the flocculated state of the suspension are characterized by faster Sonset and higher SVR, and are generally easy to resuspend. The Turbiscan® method described herein is a useful tool for the characterization of aluminum-containing suspensions and may be adapted for screening and optimization of suspension-based vaccine formulations in general.


Subject(s)
Aluminum Compounds/chemistry , Phosphates/chemistry , Vaccines/chemistry , Alum Compounds/chemistry , Animals , Antigens/chemistry , Cattle , Flocculation , Hydrogen-Ion Concentration , Muramidase/chemistry , Osmolar Concentration , Particle Size , Serum Albumin, Bovine/chemistry , Vaccine Potency
5.
J Interferon Cytokine Res ; 25(6): 311-20, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15957954

ABSTRACT

NF-kappaB is an ideal target for inhibition of proinflammatory cytokines. The purpose of this study was to determine if microencapsulated antisense oligomer to NF-kappaB can inhibit proinflammatory cytokine release in response to Escherichia coli endotoxin and bacteria. Microencapsulation takes advantage of the phagocytic function of the macrophage to deliver the oligomer intracellularly and enhance the effect. Albumin microcapsules 1 microm in size were prepared by a nebulization method containing antisense oligomers to NF-kappaB. E. coli endotoxin was incubated in 1 ml aliquots of whole blood. Microencapsulated antisense to NF-kappaB was given, and the inhibition of tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-6, and IL-8 was compared with similar amounts of oligomer in solution. Endotoxic shock was produced in rats using E. coli endotoxin (15 mg/kg). Peritonitis was induced by injecting 10(10) CFU E. coli. Cytokines were measured after simultaneous and delayed (4 h) administration of antisense to NF-kappaB in microcapsules and solution form. TNF was suppressed by 81% in whole blood, 56% in the endotoxic shock model, 89% in the peritonitis model (simultaneous treatment), and 56% in the delayed treatment group. Survival was 70% in the endotoxic shock group, 80% in the simultaneous peritonitis group, and 70% in the delayed treatment group. Microcapsule treatment using antisense to NF-kappaB suppressed TNF and IL-1 levels and mortality significantly better than all solution treatment groups in the whole blood model, endotoxic shock model, and peritonitis model.


Subject(s)
NF-kappa B , Oligodeoxyribonucleotides, Antisense/administration & dosage , Shock, Septic/drug therapy , Animals , Capsules , Cells, Cultured , Cytokines/blood , Endotoxins/toxicity , NF-kappa B/genetics , Oligodeoxyribonucleotides, Antisense/genetics , Peritonitis/blood , Peritonitis/chemically induced , Peritonitis/drug therapy , Rats , Rats, Inbred F344 , Shock, Septic/blood , Shock, Septic/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...