Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119287, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33316654

ABSTRACT

The complex 4f and 5d orbits of lanthanide oxide clusters increases the complexity and difficulty in both theoretical and experimental research. Combining the photoelectron imaging spectroscopy and ab initio calculations, the structural and electronic properties of HoO- were studied. The adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of HoO- have been measured to be 1.31(3) eV and 1.42(2) eV, respectively. To determine the vibrational structure and observed spectral bands in the photoelectron spectrum, Franck-Condon simulation of the ground-state transition for HoO- has been performed. The fundamental frequency of ground-state HoO is estimated to be 893 ± 73 cm-1. Density functional method (DFT) was used to study the neutral and anionic clusters of HoOn-1/0 (n = 1-3), and the most stable cluster structures were obtained. Based on the DFT calculations, the theoretical ADEs and VDEs of anionic HoOn- (n = 1-3) clusters were obtained and the photoelectron spectra (PES) of HoOn- (n = 1-3) clusters were simulated, which might stimulate further experimental investigations on the Ho oxide clusters. In addition, the corresponding molecular orbitals (MOs) were also discussed to reveal the interaction between Ho and O atoms. This study can help us to understand the chemical bonding in Ho-containing molecules and will provide some light in their surface chemistry and photochemistry investigation.

2.
Inorg Chem ; 59(23): 16944-16951, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33135891

ABSTRACT

Generally, compared to conjugated chain molecules, aromaticity provides additional stability for the cyclic, planar, and conjugated molecules. Thus, the concept of aromaticity was undeniably utilized to explain the unique stability for extensive cyclic molecules (notably for benzene, recently reported boron rings, and all-metal multiply aromatic Al42- salts) to guide chemical syntheses. However, can aromaticity alone describe the stability for all of those cyclic and planar clusters or molecules? In this regard, we observed the four-membered prototypical rings: c-M2O2-/0 clusters (M = B, Al, Ga, and In) possessing unique rhombic (four-center, four-electron) π and σ o-bonds, which are considered to have 3-fold aromaticity. Moreover, we not only elucidated the key role of ring strain energy (RSE) to determine the stability of these rings but also unexpectedly revealed that the electrostatic interaction (ionicity) plays a fundamental role in the stability of Al2O2-/0 clusters through systematically experimental and theoretical investigations into the isolated M2O2-/0 clusters (M = B, Al, Ga, and In). Detailed geometries, molecular orbital, and chemical bonding nature were analyzed to unravel those influences. This work provides a clue in which RSE and the electrostatic effect should be carefully taken into account for the stability of diverse cyclic clusters or molecules compared to the expected stability factor from aromaticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...