Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 449: 139192, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583404

ABSTRACT

The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 µmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).


Subject(s)
Antioxidants , Hypoglycemic Agents , Antioxidants/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Acetylation , Palm Oil/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Laccase/chemistry , Laccase/metabolism , Methylation , Cellulase/chemistry , Cellulase/metabolism , Hydrolysis , Viscosity , Seeds/chemistry , Food Handling , Polyphenols/chemistry , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...