Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Safety and Health at Work ; : 248-254, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-939006

ABSTRACT

Background@#Occupational hazards in crop farms vary diversely based on different field operations as soil management, harvesting processes, pesticide, or fertilizer application. We aimed at evaluating the immunological status of crop farmers, as limited systematic investigations on immune alteration involved with crop farming have been reported yet. @*Methods@#Immunological parameters including plasma immunoglobulin level, major peripheral immune cells distribution, and level of cytokine production from activated T cell were conducted. Nineteen grape orchard, 48 onion open-field, and 21 rose greenhouse farmers were participated. @*Results@#Significantly low proportion of natural killer (NK) cell, a core cell for innate immunity, was revealed in the grape farmers (19.8 ± 3.3%) in comparison to the onion farmers (26.4 ± 3.1%) and the rose farmers (26.9 ± 2.5%), whereas cytotoxic T lymphocyte proportion was lower in the grape and the onion farmers than the rose farmers. The proportion of NKT cell, an immune cell implicated with allergic response, was significantly higher in the grape (2.3 ± 0.3%) and the onion (1.6 ± 0.8%) farmers compared with the rose farmers (1.0 ± 0.4%). A significantly decreased interferon-gamma:interleukin-13 ratio was observed from ex vivo stimulated peripheral blood mononuclear cells of grape farmers compared with the other two groups. The grape farmers revealed the lowest levels of plasma IgG1 and IgG4, and their plasma IgE level was not significantly different from that of the onion or the rose farmers. @*Conclusion@#Our finding suggests the high vulnerability of workplace-mediated allergic immunity in grape orchard farmers followed by open-field onion farmers and then the rose greenhouse farmers.

2.
Nat Commun ; 10(1): 3667, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413255

ABSTRACT

Receptor type protein tyrosine phosphatase-sigma (PTPσ) is primarily expressed by adult neurons and regulates neural regeneration. We recently discovered that PTPσ is also expressed by hematopoietic stem cells (HSCs). Here, we describe small molecule inhibitors of PTPσ that promote HSC regeneration in vivo. Systemic administration of the PTPσ inhibitor, DJ001, or its analog, to irradiated mice promotes HSC regeneration, accelerates hematologic recovery, and improves survival. Similarly, DJ001 administration accelerates hematologic recovery in mice treated with 5-fluorouracil chemotherapy. DJ001 displays high specificity for PTPσ and antagonizes PTPσ via unique non-competitive, allosteric binding. Mechanistically, DJ001 suppresses radiation-induced HSC apoptosis via activation of the RhoGTPase, RAC1, and induction of BCL-XL. Furthermore, treatment of irradiated human HSCs with DJ001 promotes the regeneration of human HSCs capable of multilineage in vivo repopulation. These studies demonstrate the therapeutic potential of selective, small-molecule PTPσ inhibitors for human hematopoietic regeneration.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Hematopoietic Stem Cells/drug effects , Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors , Regeneration/drug effects , Allosteric Regulation , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/radiation effects , Fluorouracil/pharmacology , Hematopoietic Stem Cells/radiation effects , Humans , Mice , Radiation , Regeneration/radiation effects , bcl-X Protein/drug effects , bcl-X Protein/metabolism , rac1 GTP-Binding Protein/drug effects , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/drug effects , rho GTP-Binding Proteins/metabolism
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-209541

ABSTRACT

Cytokines activate several inflammatory signals that mediate beta-cell destruction. We recently determined that SPA0355 is a strong anti-inflammatory compound, thus reporting its efficacy in protecting beta cells from various insults. The effects of SPA0355 on beta-cell survival were studied in RINm5F cells and primary islets. The protective effects of this compound on the development of type 1 diabetes were evaluated in non-obese diabetic (NOD) mice. SPA0355 completely prevented cytokine-induced nitric oxide synthase (iNOS) expression and cytotoxicity in RINm5F cells and isolated islets. The molecular mechanism of SPA0355 inhibition of iNOS expression involves the inhibition of nuclear factor kappaB and Janus kinase signal transducer and activator of transcription pathways. The protective effects of SPA0355 against cytokine toxicity were further demonstrated by normal insulin secretion and absence of apoptosis of cytokine-treated islets. In experiments with NOD mice, the occurrence of diabetes was efficiently reduced when the mice were treated with SPA0355. Therefore, SPA0355 might be a valuable treatment option that delays the destruction of pancreatic beta cells in type 1 diabetes.


Subject(s)
Animals , Mice , Rats , Apoptosis , Benzoxazines/pharmacology , Cell Line , Cell Survival , Cells, Cultured , Diabetes Mellitus, Experimental/prevention & control , Insulin-Secreting Cells/drug effects , Janus Kinases/genetics , Mice, Inbred NOD , NF-kappa B/genetics , Nitric Oxide Synthase Type II/genetics , Thiourea/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...