Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36961978

ABSTRACT

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitination
2.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 690-697, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35647916

ABSTRACT

Starting with a crystal structure of a macromolecule, computational structural modeling can help to understand the associated biological processes, structure and function, as well as to reduce the number of further experiments required to characterize a given molecular entity. In the past decade, two classes of powerful automated tools for investigating the binding properties of proteins have been developed: the protein-protein docking program ClusPro and the FTMap and FTSite programs for protein hotspot identification. These methods have been widely used by the research community by means of publicly available online servers, and models built using these automated tools have been reported in a large number of publications. Importantly, additional experimental information can be leveraged to further improve the predictive power of these approaches. Here, an overview of the methods and their biological applications is provided together with a brief interpretation of the results.


Subject(s)
Proteins , Computer Simulation , Molecular Docking Simulation , Protein Conformation , Proteins/chemistry
3.
Pac Symp Biocomput ; 27: 46-55, 2022.
Article in English | MEDLINE | ID: mdl-34890135

ABSTRACT

Predicting protein side-chains is important for both protein structure prediction and protein design. Modeling approaches to predict side-chains such as SCWRL4 have become one of the most widely used tools of its type due to fast and highly accurate predictions. Motivated by the recent success of AlphaFold2 in CASP14, our group adapted a 3D equivariant neural network architecture to predict protein side-chain conformations, specifically within a protein-protein interface, a problem that has not been fully addressed by AlphaFold2.


Subject(s)
Computational Biology , Proteins , Humans , Models, Molecular , Protein Conformation , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...