Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(11): 3037-3042, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38466241

ABSTRACT

A clear picture of the local solvation structure around halide anions in liquid water remains elusive. This discussion has been stimulated by pioneering simulation results that proposed a "hydrophobic cavity" around anions in the bulk, which is analogous to air at the air-water interface. However, there is also sound experimental and theoretical evidence that halide ions are rather symmetrically solvated in the bulk, leading to a different viewpoint. Using extensive ab initio molecular dynamics simulations of an aqueous Cl- solution, we indeed find an anisotropic arrangement of H-bonded versus interstitial water molecules. The latter are not H-bonded to the anions and thus do not couple much electronically to Cl-. The resulting purely electronic anisotropy of the local solvation environment correlates with that structural anisotropy, which however should not be understood as an empty cavity─as it would be at the air-water interface─but rather contains interstitial water molecules.

2.
J Phys Chem B ; 125(22): 5909-5919, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34060849

ABSTRACT

Trajectories of atomic positions derived from ab initio molecular dynamics (AIMD) simulations of H-bonded liquids contain a wealth of information on dominant structural motifs and recurrent patterns of association. Extracting this information from a detailed search of the trajectories over multiple time frames is, however, a daunting exercise. Here, we use a machine learning strategy based on the neural inspired approach of the self-organizing maps (SOM), a type of artificial neural network that uses unsupervised competitive learning, to analyze the AIMD trajectories of liquid ethylene glycol (EG). The objective was to find whether there are H-bonded fragments, of two or more H-bonded EG molecules, that are recurrent in the liquid and to identify them. The SOM represents a set of high-dimensional data mapped onto a two-dimensional, grid of neurons or nodes, while preserving the topological properties of the input space. We show here that clustering of the fragments by SOM in terms of the molecular conformation of the individual EG molecules of the fragment and their H-bond connectivity pattern facilitates the search for H-bonded motifs. Using this approach, we are able to identify a H-bonded cyclic dimer and a bifurcated H-bonded structure as recurring motifs that appear in the longer H-bonded fragments present in liquid EG.


Subject(s)
Ethylene Glycol , Machine Learning , Algorithms , Cluster Analysis , Neural Networks, Computer
3.
J Phys Chem B ; 125(7): 1888-1895, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33560860

ABSTRACT

The central OCCO dihedral of the ethylene glycol (EG) molecule exists in both trans and gauche geometries in the liquid. The presence of the trans conformer had been inferred from the Raman spectra by interpreting the occurrence of bands in the Raman spectra that were absent in the infrared as evidence for inversion symmetry and hence the trans conformation. The validity of this interpretation is questionable as not all conformations of the EG molecule, where the OCCO dihedral is trans, possess inversion symmetry. We show here that the resolution of the apparent paradox is intimately related to the conformation and dynamics of not just the central OCCO but also the two terminal dihedrals of the EG molecule. Using ab initio molecular dynamics simulations, we show that changes in conformation associated with the three dihedral angles are not infrequent; a number of events are observed during the course of the simulations allowing for a straightforward estimate of the kinetic parameters. More importantly, these parameters allow us to address and resolve the problems in interpreting the Raman spectra and consequently relate molecular conformation to the Raman spectrum of the EG molecule in the liquid state.

4.
J Phys Chem B ; 124(41): 9136-9143, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32945675

ABSTRACT

The ethylene glycol (EG) molecule, HOCH2CH2OH, adopts a conformation where the central OCCO dihedral is exclusively gauche in the gaseous and crystalline states, but in the liquid state, for close to 20% of the molecules, the central OCCO adopts the energetically unfavorable trans conformation. Here we report calculations, based on ab initio molecular dynamics simulations, on the thermodynamics associated with hydrogen bond formation in the liquid state of EG between donor-acceptor pairs with different molecular conformations. We establish an operational, geometric definition of hydrogen bonds in liquid EG from an analysis of the proton NMR data and show that the key feature, irrespective of the conformation, is marked directionality with almost linear ∠HO···O angles. The free energy for hydrogen bond formation estimated as the potential of mean force for the reversible work associated with the passage from a hypothetical state where hydrogen bonding is absent and donor-acceptor pairs are randomly oriented to the hydrogen-bonded state where the pairs are oriented showed comparable magnitudes irrespective of the molecular conformation of either the donor or acceptor. The results suggest that the presence of the trans conformer in liquid EG would require an understanding of its role in the extended hydrogen-bonded network of the liquid.

5.
J Phys Chem B ; 124(17): 3548-3555, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32242419

ABSTRACT

Linear monohydroxy alcohols are strongly hydrogen-bonded liquids that are considered to be homologues of water. Here, we report ab initio molecular dynamics simulations of the liquid alcohols, methanol to pentanol, and from the combined radial-angular probability distribution of the intermolecular O···O distances and HO···O angles determine the geometrical parameters that define the hydrogen bonds in these systems. The key feature of hydrogen bonds in the liquid alcohols, irrespective of the size of the alkyl group, is the strong orientation dependence with the donor-acceptor HO···O angle being close to zero, similar to that observed in liquid water. Hydrogen bond formation is consequently considered to be the passage from a state where donor-acceptor pairs show no preferred orientation to one where they are almost linear. The potential of mean force, the reversible work associated with this process, is computed from the pair probability density distributions obtained from the simulations and that for a hypothetical state where donor-acceptor pairs are randomly oriented. We find that the magnitude of the free energy for hydrogen bond formation is maximum for ethanol and show that this arises from a larger electrostatic contribution to hydrogen bond formation in ethanol as compared to the other alcohols.

6.
Phys Chem Chem Phys ; 22(12): 6690-6697, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32159563

ABSTRACT

Monohydroxy alcohols are strongly associating liquids with the hydrogen bonding associated with the presence of the hydroxyl group having a significant influence on properties. Here we determine the geometry of the hydrogen bond in linear alcohols, methanol to pentanol, arising from intermolecular OHO interactions, from ab initio molecular dynamics trajectories by plotting the intermolecular non-bonded OHO and OO distances, and the ∠HOO (θ) angles for every possible pair of alcohol molecules in the ensemble. Two regions separate out in the scatter-plot; the one with short OHO and OO intermolecular distances and almost linear ∠HOO angles may be identified as the region where the intermolecular OHO geometry would be favorable for hydrogen bonding. We find that the geometry of the hydrogen bond arising from intermolecular OHO interactions in liquid alcohols shows little change with an increase in size of the alkyl group. This observation is in direct contrast to that in the crystalline state where marked departures in the HOO angle from linearity are seen with an increase in the alkyl chain on going from methanol to pentanol.

7.
J Phys Chem B ; 124(4): 662-667, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31910621

ABSTRACT

Quantitative information of hydrogen bonding is crucial to our understanding of the structure and properties of associated liquids. Here, we outline a simple procedure to establish the geometry of hydrogen bonds in liquid ethanol using proton nuclear magnetic resonance (NMR) spectroscopy. We do so by exploiting differences in proton chemical shift values, that originate from the secondary isotope effect, to distinguish the methyl and hydroxyl group protons of CH3CH2OH from those of the deuterated CH3CD2OH in the 1H NMR spectra of mixtures of the two. This has allowed us to measure the ratios of the inter- to intramolecular distances between methyl to hydroxyl and methylene to hydroxyl protons using one-dimensional (1D) transient nuclear Overhauser effect NMR measurements as a molecular ruler. We model liquid ethanol by ab initio molecular dynamics simulations and identify all possible pairs of ethanol molecules in the ensemble that satisfied the NMR-determined inter- to intramolecular distance ratio criteria. For these pairs of ethanol molecules, we find the mean value of the hydrogen bonding distance, rOH···O, to be 1.93 Å and the value of the ∠HO···O angle to be 13.3°, thus effectively establishing the geometry of hydrogen bonds in liquid ethanol. An interesting observation that emerges from our study is the linear correlation between hydrogen bond distances and angles in ethanol.

8.
J Phys Chem B ; 122(42): 9757-9762, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30247909

ABSTRACT

The central OCCO backbone of the 1,2-ethanediol molecule adopts the gauche conformer in the gaseous and crystalline states but exists in conformational equilibrium between gauche and trans in the liquid; an observation that has been attributed to the competition between intra- and intermolecular interactions. Here, we show that the nuclear Overhauser effect (NOE) has the ability to distinguish inter- from intramolecular interactions in liquid 1,2-ethanediol. We do so by exploiting the secondary isotope effect to distinguish the hydroxyl protons of HOCH2CH2OH and the deuterated HOCD2CD2OH in the 1H NMR spectra of mixtures of the two and, in conjunction with ab initio MD simulations, show how the interplay between inter- and intramolecular interactions gives rise to the conformational isomers in the liquid state of 1,2-ethanediol.

9.
J Phys Chem B ; 121(22): 5595-5600, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28490176

ABSTRACT

Ethylene glycol is a typical rotor molecule with the three dihedral angles that allow for a number of possible conformers. The geometry of the molecule in the liquid state brings into sharp focus the competition between intra- and inter-molecular interactions in deciding conformation. Here, we report a conformational analysis of ethylene glycol in the liquid state from ab initio molecular dynamics simulations. Our results highlight the importance of intermolecular hydrogen bonding over intramolecular interactions in the liquid, with the central OCCO linkage adopting both gauche and trans geometries in contrast to the gas phase, wherein only the gauche has been reported. The influence of intermolecular interactions on the conformation of the terminal CCOH moieties is even more striking, with certain regions of conformational space, wherein the ethylene glycol molecule cannot participate with its full complement of intermolecular hydrogen bonds, excluded. The results are in agreement with Raman and NMR spectroscopic studies of liquid ethylene glycol, but at the same time they are able to provide new insights into how intermolecular interactions favor certain conformations while excluding others.

10.
ScientificWorldJournal ; 2013: 523759, 2013.
Article in English | MEDLINE | ID: mdl-23935422

ABSTRACT

The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.


Subject(s)
Air , Aircraft , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...