Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281366

ABSTRACT

The COVID-19 pandemic and the associated prevention measures did not only impact on the transmission of COVID-19 but also on the spread of other infectious diseases in an unprecedented natural experiment. Here, we analysed the transmission patterns of 22 different infectious diseases during the COVID-19 pandemic in England. Our results show that the COVID-19 prevention measures generally reduced the spread of pathogens that are transmitted via the air and the faecal-oral route. Moreover, the COVID-19 prevention measures resulted in the sustained suppression of vaccine-preventable infectious diseases also after the removal of restrictions, while non-vaccine preventable diseases displayed a rapid rebound. Despite concerns that a lack of exposure to common pathogens may affect population immunity and result in large outbreaks by various pathogens post-COVID-19, only four of the 22 investigated diseases and disease groups displayed higher post-than pre-pandemic levels without an obvious causative relationship. Notably, this included chickenpox for which an effective vaccine is available but not used in the UK, which provides strong evidence supporting the inclusion of the chickenpox vaccination into the routine vaccination schedule in the UK. In conclusion, our findings provide unique, novel insights into the impact of non-pharmaceutical interventions on the spread of a broad range of infectious diseases.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-506799

ABSTRACT

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface (ALI) cultures of primary human bronchial epithelial (HBE) cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active type I (/{beta}) and III ({lambda}) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signalling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knock-out prevented it. The JAK/ STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/ STAT signalling. In conclusion, our study 1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, 2) shows that Omicron infection protects cells from influenza A virus super-infection, and 3) indicates that BA.1 and BA.5 induce comparable antiviral states.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-501169

ABSTRACT

Omicron BA.1 variant isolates were previously shown to replicate less effectively in interferon-competent cells and to be more sensitive to interferon treatment than a Delta isolate. Here, an Omicron BA.2 isolate displayed intermediate replication patterns in interferon-competent Caco-2-F03 cells when compared to BA.1 and Delta isolates. Moreover, BA.2 was less sensitive than BA.1 and similarly sensitive as Delta to betaferon treatment. Delta and BA.1 displayed similar sensitivity to the approved anti-SARS-CoV-2 drugs remdesivir, nirmatrelvir, EIDD-1931 (the active metabolite of molnupiravir) and the protease inhibitor aprotinin, whereas BA.2 was less sensitive than Delta and BA.1 to EIDD-1931, nirmatrelvir and aprotinin. Nirmatrelvir, EIDD-1931, and aprotinin (but not remdesivir) exerted synergistic antiviral activity in combination with betaferon, with some differences in the extent of synergism detected between the different SARS-CoV-2 variants. In conclusion, even closely related SARS-CoV-2 (sub)variants can differ in their biology and in their response to antiviral treatments. Betaferon combinations with nirmatrelvir and, in particular, with EIDD-1931 and aprotinin displayed high levels of synergism, which makes them strong candidates for clinical testing. Notably, effective antiviral combination therapies are desirable, as a higher efficacy is expected to reduce resistance formation.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-500346

ABSTRACT

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a read-out for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in a broad range of cell culture models, independently of cytopathogenic effect formation. Compared to other cell culture models, the Caco-2 subline Caco-2-F03 displayed superior performance, as it possesses a stable SARS-CoV-2 susceptible phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of PHGDH, CLK-1, and CSF1R. The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the HK2 inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false positive hits.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-478671

ABSTRACT

Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging-based SARS-CoV-2 infection assay was developed in VeroE6-eGFP cells and was used to screen a library of 5676 compounds that passed phase 1 clinical trials. Eight candidates (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) with in vitro anti-SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines were identified. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-478628

ABSTRACT

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFN (IFN-{lambda}) exhibit cell-type specific and long-lasting functions in autoinflammation, tumorigenesis and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-{lambda} secretion and SARS-CoV-2 infections in native human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-{lambda} and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 23-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-{lambda} expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-477067

ABSTRACT

Recently, we have shown that SARS-CoV-2 Omicron virus isolates are less effective at inhibiting the host cell interferon response than Delta viruses. Here, we present further evidence that reduced interferon-antagonising activity explains at least in part why Omicron variant infections are inherently less severe than infections with other SARS-CoV-2 variants. Most importantly, we here also show that Omicron variant viruses display enhanced sensitivity to interferon treatment, which makes interferons promising therapy candidates for Omicron patients, in particular in combination with other antiviral agents.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21249237

ABSTRACT

Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called Coronavirus Disease 2019 (COVID-19). Control of SARS-CoV-2 spread will depend on vaccine-induced or naturally acquired protective herd immunity. Until then, antiviral strategies are needed to manage COVID-19, but approved antiviral treatments, such as remdesivir, can only be delivered intravenously. Enisamium (laboratory code FAV00A, trade name Amizon(R)) is an orally active inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. Here we show that enisamium can inhibit SARS-CoV-2 infections in NHBE and Caco-2 cells. In vitro, the previously identified enisamium metabolite VR17-04 directly inhibits the activity of the SARS-CoV-2 RNA polymerase. Docking and molecular dynamics simulations suggest that VR17-04 prevents GTP and UTP incorporation. To confirm enisamiums antiviral properties, we conducted a double-blind, randomized, placebo-controlled trial in adult, hospitalized COVID-19 patients, which needed medical care either with or without supplementary oxygen. Patients received either enisamium (500 mg per dose) or placebo for 7 days. A pre-planned interim analysis showed in the subgroup of patients needing supplementary oxygen (n = 77) in the enisamium group a mean recovery time of 11.1 days, compared to 13.9 days for the placebo group (log-rank test; p=0.0259). No significant difference was found for all patients (n = 373) or those only needing medical care (n = 296). These results thus suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis and that enisamium treatment shortens the time to recovery for COVID-19 patients needing oxygen. Significance statementSARS-CoV-2 is the causative agent of COVID-19. Although vaccines are now becoming available to prevent SARS-CoV-2 spread, the development of antivirals remains necessary for treating current COVID-19 patients and combating future coronavirus outbreaks. Here, we report that enisamium, which can be administered orally, can prevent SARS-CoV-2 replication and that its metabolite VR17-04 can inhibit the SARS-CoV-2 RNA polymerase in vitro. Moreover, we find that COVID-19 patients requiring supplementary oxygen, recover more quickly than patients treated with a placebo. Enisamium may therefore be an accessible treatment for COVID-19 patients.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-417741

ABSTRACT

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease PLpro domain that cleaves not only the viral protein but also polyubiquitin and the ubiquitin-like modifier ISG15 from host cells. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-381194

ABSTRACT

BackgroundAs long as there is no vaccine available, having access to inhibitors of SARS-CoV-2 will be of utmost importance. Antivirals against coronaviruses do not exist, hence global drug re-purposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have potential activity against animal coronaviruses. MethodsUsing cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with SARS-CoV-2. ResultsItraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 M; MTT assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 M). Remdesivir inhibited viral replication with an EC50 = 0.4 M. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10, as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3 log10 drop and >4 log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. DiscussionItraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15). HighlightsO_LIItraconazole exerted in vitro low micromolar activity against SARS-CoV-2 (EC50 = 2.3 M) C_LIO_LIRemdesivir demonstrated potent antiviral activity, confirming validity of the assay C_LIO_LIItraconazole has since shown no efficacy in a clinical study in hospitalized COVID-19 patients C_LI

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-308239

ABSTRACT

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific communitys massive response has resulted in a flood of experiments, analyses, hypotheses, and publications, especially in the field of drug repurposing. However, many of the proposed therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and thus demonstrate the need for a singular source of COVID-19 related information from which a rational selection of drug repurposing candidates can be made. In this paper, we present the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a compilation of 10 separate disease maps and sources of experimental data focused on SARS-CoV-2 / COVID-19 pathophysiology. By applying our systematic approach, we were able to predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results demonstrate that our graph can be used to not only explore the involved mechanistic pathways, but also to identify novel combinations of drug repurposing candidates.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-292581

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Laboratory work with SARS-CoV-2 in a laboratory setting was rated to biosafety level 3 (BSL-3) biocontainment level. However, certain research applications in particular in molecular biology require incomplete denaturation of the proteins, which might cause safety issues handling contaminated samples. In particular, it is critical to provide proof of inactivation before samples can be removed from the BSL-3. In this study, the stability of the virus in cell culture media at 4{degrees}C and on touch panel surfaces used in laboratory environment was analyzed. In addition, we evaluated common lysis buffers that are used in molecular biological laboratories for their ability to inactivate SARS-CoV-2. We have found that guanidine thiocyanate and most of the tested detergent containing lysis buffers were effective in inactivation of SARS-CoV-2, however, the M-PER lysis buffer containing a proprietary detergent failed to inactivate SARS-CoV-2. Furthermore, we compared chemical and non-chemical inactivation methods including ethanol, acetone-methanol mixture, PFA, UV-C light, and heat inactivation. In conclusion, careful evaluation of the used inactivation methods are required and additional inactivation steps are necessary before removal of lysed viral samples from BSL-3.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-257022

ABSTRACT

It becomes more and more obvious that deregulation of host metabolism play an important role in SARS-CoV-2 pathogenesis with implication for increased risk of severe course of COVID-19. Furthermore, it is expected that COVID-19 patients recovered from severe disease may experience long-term metabolic disorders. Thereby understanding the consequences of SARS-CoV-2 infection on host metabolism can facilitate efforts for effective treatment option. We have previously shown that SARS-CoV-2-infected cells undergo a shift towards glycolysis and that 2-deoxy-D-glucose (2DG) inhibits SARS-CoV-2 replication. Here, we show that also pentose phosphate pathway (PPP) is remarkably deregulated. Since PPP supplies ribonucleotides for SARS-CoV-2 replication, this could represent an attractive target for an intervention. On that account, we employed the transketolase inhibitor benfooxythiamine and showed dose-dependent inhibition of SARS-CoV-2 in non-toxic concentrations. Importantly, the antiviral efficacy of benfooxythiamine was further increased in combination with 2DG.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-127605

ABSTRACT

BackgroundThe coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality in COVID-19 patients. It is unclear whether cardiac injury may have been caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here we investigate whether human cardiomyocytes are permissive for SARS-CoV-2 infection. MethodsInfection was induced by two strains of SARS-CoV-2 (FFM1 and FFM2) in human induced pluripotent stem cells-derived cardiomyocytes (hiPS-CM) and in two models of human cardiac tissue. ResultsWe show that SARS-CoV-2 infects hiPS-CM as demonstrated by detection of intracellular double strand viral RNA and viral spike glycoprotein protein expression. Increasing concentrations of virus RNA are detected in supernatants of infected cardiomyocytes, which induced infections in CaCo-2 cell lines documenting productive infections. SARS-COV-2 infection induced cytotoxic and pro-apoptotic effects and abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signaling, apoptosis and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a iPS-derived human 3D cardiosphere tissue models. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. ConclusionsThe demonstration that cardiomyocytes are permissive for SARS-CoV-2 infection in vitro warrants the further in depth monitoring of cardiotoxic effects in COVID-19 patients. Clinical PerspectiveO_ST_ABSWhat is New?C_ST_ABSO_LIThis study demonstrates that human cardiac myocytes are permissive for SARS-CoV-2 infection. C_LIO_LIThe study documents that SARS-CoV-2 undergoes a full replicatory circle and induces a cytotoxic response in cardiomyocytes. C_LIO_LIInfection was confirmed in two cardiac tissue models, including living human heart slices. C_LI What are the Clinical Implications?O_LIThe study may provide a rational to explain part of the cardiotoxicity observed in COVID-19 patients C_LIO_LIThe demonstration of direct cardiotoxicity induced by SARS-CoV-2 warrants an in depth further analysis of cardiac tissue of COVID-19 patients and a close monitoring for putative direct cardiomyocyte injury. C_LIO_LIThe established models can be used to test novel therapeutic approaches targeting COVID-19. C_LI

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-095661

ABSTRACT

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinder therapy development. We employed a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phospho-proteomics. We identified viral protein phosphorylation and defined phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways were activated. Drug-protein network analyses revealed GFR signaling as key pathway targetable by approved drugs. Inhibition of GFR downstream signaling by five compounds prevented SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as central pathway essential for SARS-CoV-2 replication. It provides with novel strategies for COVID-19 treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...