Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(20): 20643-20653, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37796635

ABSTRACT

Here, by introducing polystyrenesulfonate (PSS) as a multifunctional bridging molecule to synchronously coordinate the interaction between the precursor and the structure-directing agent, we developed a mesoporous conductive polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) featuring adjustable size in the range of 105-1836 nm, open nanochannels, large specific surface area (105.5 m2 g-1), and high electrical conductivity (172.9 S cm-1). Moreover, a large-area ultrathin PEDOT:PSS thin film with well-defined mesopores can also be obtained by controllable growth on various functional interfaces. As an example, we demonstrated that the iodine-loaded mesoporous PEDOT:PSS nanospheres can serve as a promising cathode for aqueous zinc-iodine batteries with high specific capacity (241 mAh g-1), excellent rate performance, and superlong 20,000 cycle life. In-depth theoretical calculations and systematic experimental results together reveal that the exposed sulfur- and oxygen-containing functional groups hold strong interactions with iodine species, resulting in effectively anchoring iodine species and inhibiting the shuttling of polyiodide intermediates, thus ensuring the long-term stability of the batteries. This work introduces a member to the family of mesoporous materials as well as porous polymers with versatile applications.

2.
Nat Commun ; 14(1): 5235, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640714

ABSTRACT

Stable cathodes with multiple redox-active centres affording a high energy density, fast redox kinetics and a long life are continuous pursuits for aqueous zinc-organic batteries. Here, we achieve a high-performance zinc-organic battery by tuning the electron delocalization within a designed fully conjugated two-dimensional hydrogen-bonded organic framework as a cathode material. Notably, the intermolecular hydrogen bonds endow this framework with a transverse two-dimensional extended stacking network and structural stability, whereas the multiple C = O and C = N electroactive centres cooperatively trigger multielectron redox chemistry with super delocalization, thereby sharply boosting the redox potential, intrinsic electronic conductivity and redox kinetics. Further mechanistic investigations reveal that the fully conjugated molecular configuration enables reversible Zn2+/H+ synergistic storage accompanied by 10-electron transfer. Benefitting from the above synergistic effects, the elaborately tailored organic cathode delivers a reversible capacity of 498.6 mAh g-1 at 0.2 A g-1, good cyclability and a high energy density (355 Wh kg-1).

3.
Nat Protoc ; 18(8): 2459-2484, 2023 08.
Article in English | MEDLINE | ID: mdl-37460631

ABSTRACT

Conducting polymers with conjugated backbones have been widely used in electrochemical energy storage, catalysts, gas sensors and biomedical devices. In particular, two-dimensional (2D) mesoporous conducting polymers combine the advantages of mesoporous structure and 2D nanosheet morphology with the inherent properties of conducting polymers, thus exhibiting improved electrochemical performance. Despite the use of bottom-up self-assembly approaches for the fabrication of a variety of mesoporous materials over the past decades, the synchronous control of the dimensionalities and mesoporous architectures for conducting polymer nanomaterials remains a challenge. Here, we detail a simple, general and robust route for the preparation of a series of 2D mesoporous conducting polymer nanosheets with adjustable pore size (5-20 nm) and thickness (13-45 nm) and controllable morphology and composition via solution-based self-assembly. The synthesis conditions and preparation procedures are detailed to ensure the reproducibility of the experiments. We describe the fabrication of over ten high-quality 2D-ordered mesoporous conducting polymers and sandwich-structured hybrids, with tunable thickness, porosity and large specific surface area, which can serve as potential candidates for high-performance electrode materials used in supercapacitors and alkali metal ion batteries, and so on. The preparation time of the 2D-ordered mesoporous conducting polymer is usually no more than 12 h. The subsequent supercapacitor testing takes ~24 h and the Na ion battery testing takes ~72 h. The procedure is suitable for users with expertise in physics, chemistry, materials and other related disciplines.


Subject(s)
Nanostructures , Polymers , Polymers/chemistry , Reproducibility of Results , Nanostructures/chemistry , Porosity , Catalysis
4.
Adv Sci (Weinh) ; 10(19): e2301918, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098637

ABSTRACT

Despite the impressive progress in mesoporous materials over past decades, for those precursors having no well-matched interactions with soft templates, there are still obstacles to be guided for mesoporous structure via soft-template strategies. Here, a polyoxometalate-assisted co-assembly route is proposed for controllable construction of superstructured mesoporous materials by introducing polyoxometalates as bifunctional bridge units, which weakens the self-nucleation tendency of the precursor through coordination interactions and simultaneously connects the template through the induced dipole-dipole interaction. By this strategy, a series of meso-structured polymers, featuring highly open radial mesopores and dendritic pore walls composed of continuous interwoven nanosheets can be facilely obtained. Further carbonization gave rise to nitrogen-doped hierarchical mesoporous carbon decorated uniformly with ultrafine γ-Mo2 N nanoparticles. Density functional theory proves that nitrogen-doped carbon and γ-Mo2 N can strongly adsorb polyiodide ions, which effectively alleviate polyiodide dissolving in organic electrolytes. Thereby, as the cathode materials for sodium-iodine batteries, the I2 -loaded carbonaceous composite shows a high specific capacity (235 mA h g-1 at 0.5 A g-1 ), excellent rate performance, and cycle stability. This work will open a new venue for controllable synthesis of new hierarchical mesoporous functional materials, and thus promote their applications toward diverse fields.

5.
Langmuir ; 39(17): 6222-6230, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37079335

ABSTRACT

Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.

6.
Nanoscale ; 15(12): 5909-5918, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36876891

ABSTRACT

Non-thermal plasma (NTP) degradation of volatile organic compounds (VOCs) into CO2 and H2O is a promising strategy for addressing ever-growing environment pollution. However, its practical implementation is hindered by low conversion efficiency and emissions of noxious by-products. Herein, an advanced low-oxygen-pressure calcination process is developed to fine-tune the oxygen vacancy concentration of MOF-derived TiO2 nanocrystals. Vo-poor and Vo-rich TiO2 catalysts were placed in the back of an NTP reactor to convert harmful ozone molecules into ROS that decompose VOCs via heterogeneous catalytic ozonation processes. The results indicate that Vo-TiO2-5/NTP with the highest Vo concentration exhibited superior catalytic activity in the degradation of toluene compared to NTP-only and TiO2/NTP, achieving a maximum 96% elimination efficiency and 76% COx selectivity at an SIE of 540 J L-1. Mechanistic analysis reveals that the 1O2, ˙O2- and ˙OH species derived from the activation of O3 molecules on Vo sites contribute to the decomposition of toluene over the Vo-rich TiO2 surface. With the aid of advanced characterization and density functional theory calculations, the roles of oxygen vacancies in manipulating the synergistic capability of post-NTP systems were explored, and were attributed to increased O3 adsorption ability and enhanced charge transfer dynamics. This work presents novel insights into the design of high-efficiency NTP catalysts structured with active Vo sites.

7.
Opt Express ; 30(24): 42850-42860, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36522996

ABSTRACT

Metasurfaces with complex-amplitude modulation are superior in power regulation and hologram imaging resolution compared with those with phase-only modulation. Nevertheless, a single-cell metasurface with multi-band independent phase and amplitude controls is still a great challenge for the circularly polarized incidences. In this work, we propose and design a single-substrate-layer single-cell metasurface with independent complex-amplitude modulations at two discrete frequencies. Based on this emerging technique, a bi-spectral meta-hologram is designed and verified by both full-wave simulations and experiments, which could reconstruct two Chinese characters at the imaging plane at two frequencies. The proposed method shows great potential in multifunctional meta-devices with enhanced performance.

8.
Nano Lett ; 22(9): 3685-3690, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446565

ABSTRACT

Despite substantial progress in porous materials over past years, controllable preparation of conductive polymers (CPs) with continuous large pores is challenging, which are important for diverse applications, including energy storage, electrocatalysis, and biological separations. Here, we develop an unprecedented ordered bicontinuous mesoporous PPy cubosomes (mPPy-cs) using a soft-template strategy, resulting in ultralarge pores of ∼45 nm and high specific surface area of 69.5 m2 g-1. Along with their unique characteristics of adjustable surface charges and sensitivity to pH, mPPy-cs exhibited a near quantitative adsorption of albumin within 30 min, enabling efficient separation from immunoglobulin G, a typical inclusion in commercial albumin products. Moreover, the absorbed albumin could be further released in a controlled manner by lowering the pH. This work provides a feasible strategy for bottom-up construction of CPs with tailored pore sizes and nanoarchitectures, expected to attract significant attention to their properties and applications.


Subject(s)
Polymers , Pyrroles , Albumins , Polymers/chemistry , Pyrroles/chemistry , Surface Properties
9.
Opt Express ; 30(6): 10178-10186, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299427

ABSTRACT

A flexible metallic waveguide with elliptical core that achieves single-polarization single-mode (SPSM) propagation at millimeter wave was designed, fabricated, and characterized. In order to achieve SPSM propagation, optimization of the lengths of major/minor axes of elliptical core was conducted to cut off one of the two orthogonally polarized fundamental modes and all high-order modes. A one-meter long hollow elliptical waveguide (HEW) with major/minor axis length of 1.5/2.7 mm was fabricated. The substrate tube was a flexible elliptical polycarbonate (PC) tube, which was fabricated through glass-draw technique. Silver film was then coated on the inner surface of the tube. Simulation results show that the 1.5/2.7 mm HEW maintains SPSM propagation in the frequency band from 66.5 to 114 GHz. The SPSM operation was experimentally discussed in detail at 100 GHz. The measured loss of 2.58 dB/m and the output polarization ratio of 99.9% was obtained after propagating one meter. Furthermore, the waveguide was robust to bending and twisting. The additional loss was as small as 0.2 dB/m even when the waveguide was coiled into a circle. The potential application of HEWs as polarizers was demonstrated by using a 10 cm long waveguide for polarization detection and extinction ratio of 22.3 dB was achieved at 100 GHz.

10.
Macromol Rapid Commun ; 43(14): e2100897, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35182088

ABSTRACT

Conjugated polymers possess better electron conductivity due to large π-electron conjugated configuration endowing them significant scientific and technological interest. However, the obvious deficiency of active-site underutilization impairs their electrochemical performance. Therefore, designing and engineering π-conjugated polymers with rich redox functional groups and mesoporous architectures could offer new opportunities for them in these emerging applications and further expand their application scopes. Herein, a series of 1,3,5-tris(4-aminophenyl) benzene (TAPB)-based π-conjugated mesoporous polymers (π-CMPs) are constructed by one-pot emulsion-induced interface assembly strategy. Furthermore, co-induced in situ polymerization on 2D interfaces by emulsion and micelles is explored, which delivers sandwiched 2D mesoporous π-CMPs-coated graphene oxides (GO@mPTAPB). Benefiting from specific redox-active functional groups, excellent electron conductivity and a 2D mesoporous conjugated framework, GO@mPTAPB exhibits high capability of accommodating Li+ anions (up to 382 mAh g-1 at 0.2 A g-1 ) and outstanding electrochemical stability (87.6% capacity retention after 1000 cycles). The ex situ Raman and impedance spectra are further applied to reveal the high reversibility of GO@mPTAPB. This work will greatly promote the development of advanced π-CMPs-based organic anodes toward energy storage devices.

11.
J Phys Chem Lett ; 12(46): 11339-11345, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34780179

ABSTRACT

Despite the growing interest in halide perovskite-based NH3 sensors, the NH3 sensing mechanism is still not well understood. Here, we report an anomalous behavior of resistance enhancement in CH3NH3PbI3(MAPbI3) perovskite films upon exposure to NH3 gas, which is contrary to a resistance drop trend in previously reported perovskites. We propose a NH3 sensing mechanism in which the anomalous resistance enhancement is dominated by grain boundaries of perovskites. It is demonstrated that NH3 molecules can substitute MA+ cations of MAPbI3 to form the insulating NH4PbI3·MA intermediate layers onto the surface of crystal grains, thereby resulting in an increase of resistance. Additionally, we construct the MAPbI3-based sensor, and achieve a gas response of 472% toward 30 ppm of NH3. This study suggests the potential of the perovskite-based NH3 sensors, and also provides guidance for developing high-performance sensing perovskite materials.

12.
Nanomaterials (Basel) ; 11(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34578590

ABSTRACT

The phase transition, microscopic morphology and optical and ferroelectric properties are studied in a series of La- and Co-doped KNbO3-based ceramics. The results show that the doping induces the transformation from the orthorhombic to the cubic phase of KNbO3, significantly reduces the optical bandgap and simultaneously evidently improves the leakage, with a slight weakening of ferroelectric polarization. Further analysis reveals that (i) the Co doping is responsible for the obvious reduction of the bandgap, whereas it is reversed for the La doping; (ii) the slight deterioration of ferroelectricity is due to the doping-induced remarkable extrinsic defect levels and intrinsic oxygen vacancies; and (iii) the La doping can optimize the defect levels and inhibit the leakage. This investigation should both provide novel insight for exploring the bandgap engineering and ferroelectric properties of KNbO3, and suggest its potential applications, e.g., photovoltaic and multifunctional materials.

13.
Adv Mater ; 33(29): e2007318, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085735

ABSTRACT

Conductive polymers (CPs) integrate the inherent characteristics of conventional polymers and the unique electrical properties of metals. They have aroused tremendous interest over the last decade owing to their high conductivity, robust and flexible properties, facile fabrication, and cost-effectiveness. Compared to bulk CPs, porous CPs with well-defined nano- or microstructures possess open porous architectures, high specific surface areas, more exposed reactive sites, and remarkably enhanced activities. These attractive features have led to their applications in sensors, energy storage and conversion devices, biomedical devices, and so on. In this review article, the different strategies for synthesizing porous CPs, including template-free and template-based methods, are summarized, and the importance of tuning the morphology and pore structure of porous CPs to optimize their functional performance is highlighted. Moreover, their representative applications (energy storage devices, sensors, biomedical devices, etc.) are also discussed. The review is concluded by discussing the current challenges and future development trend in this field.

14.
Opt Express ; 29(6): 8430-8440, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820290

ABSTRACT

Flexible gradually tapered metal waveguides (GTMWs) are fabricated by an inner plating silver film in a polycarbonate (PC) capillary for the transmission and imaging at 0.3 THz. It was demonstrated theoretically and experimentally that GTMWs have lower transmission losses and smaller additional losses of bending, comparing with thin constant bore metal waveguides (CBMWs). Measured losses of 1.95 dB and 2.45 dB were obtained for a 1 m long GTMW with bore size varying from 2.6 mm to 1.6 mm under straight and one circle bending configuration. Measured losses were 4.48 dB/m and 7.78 dB/m for 1.6 mm bore CBMW under the same straight and bend configurations. Owing to higher energy concentration at the output, a larger penetration ability of output wave can be achieved by GTMW, which is beneficial for imaging application. A scanning imaging system was established using fabricated waveguides as the probes. Measured results show that the air slits of the order of wavelength can be clearly distinguished. An imaging system with a GTMW probe also has better performances due to lower bending loss and improved coupling efficiency.

15.
Small ; 16(37): e2002701, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32776467

ABSTRACT

Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal-organic nanomeshes with ordered mesopores is obtained by a self-assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies (≈9 nm thickness), hexagonally ordered, permeable mesopores of ≈16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur-doped metal phosphonate nanomeshes by serving as an unprecedented reactive self-template. Furthermore, as advanced anode materials for Li-ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate-based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.

16.
Nanomicro Lett ; 12(1): 31, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-34138238

ABSTRACT

Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials. However, the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure. Here, we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy, using phytic acid-based natural compounds as an example, for the spatially controlled fabrication of metal coordination bio-derived polymers. The resultant ferric phytate polymer nanospheres feature hollow architecture, ordered meso-channels of ~ 12 nm, high surface area of 401 m2 g-1, and large pore volume of 0.53 cm3 g-1. As an advanced anode material, this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g-1 at 50 mA g-1, good rate capability, and cycling stability for sodium-ion batteries. This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.

17.
Anal Chim Acta ; 1093: 115-122, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31735204

ABSTRACT

A novel polyaniline (PANI)/Eu3+ nanofiber sensing film was prepared in the presence of Eu(NO3)3 which serves as structure-directed agent. The morphological, component, crystallinity and electrochemical properties were carried out by using Scanning Electron Microscope (SEM), Energy-Dispersive X-ray (EDX), Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The results indicated the nanofiber-like network with porous structure appeared in the PANI embedded by Eu3+ ions, thereby leading to large specific surface area. Furthermore, the PANI/Eu3+ nanofibers were grown onto the inner wall of capillary glass to form the tube sensor. By the sensing measurements, this tube sensor enabled the detection of low-volume (0.3 mL) NH3 for response 435% at concentration of 0.25 ppm with a short response time (5 s) and recovery time (5 s), and the performances of reproducibility and selectivity were also excellent. The above results demonstrated the potential application of PANI/Eu3+ tube sensor for low-volume NH3 gas.

18.
RSC Adv ; 9(62): 36351-36357, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-35540569

ABSTRACT

A sodium citrate (SC) doped polypyrrole (PPy)/PS capillary sensor was prepared for ultra-small volume HCl gas detection. A PS film was formed in advance on the inner wall of a silica glass capillary tube, which enabled us to prepare a high-qualified PPy sensitive film inside the tube. The crystallinity, morphology, microstructure and carrier transport properties of the PPy film were characterized by XRD, SEM, FTIR and Hall effect system, respectively. The results indicated that the as-prepared tube sensor sample was able to detect 0.2 mL 30 ppm HCl gas while the plane-shaped PPy/PS sensor failed to probe. The improvement of sensing properties was attributed to the trend of crystallinity, pore (or gap) morphology and the long-narrow gas cell. The tube-like gas cell and the featured PPy/PS film of the tube sample contribute to sensing the small volume of HCl gas, which may be applied in breath analysis for potential nonintrusive disease diagnosis.

19.
Appl Opt ; 55(23): 6404-9, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27534486

ABSTRACT

Stainless steel (SUS) capillary tubes were examined as a category of structural tube for establishing a metallic attenuated total reflection (ATR) GeO2 hollow waveguide. GeO2 films were grown on the inner wall of SUS tubes by different liquid phase deposition (LPD) cycles. Fourier transform infrared (FTIR) spectra, scanning electronic microscope (SEM) image, and transmission loss for a CO2 laser were measured to investigate the effects of the LPD cycles on the transmission behavior of the hollow waveguide samples. The film thickness and surface roughness increase with every LPD cycle. The two LPD cycle sample has a film thickness equivalent to the CO2 laser wavelength, while the surface roughness is acceptable. This sample has the lowest transmission loss (0.27 dB/m) among these samples. The bending loss, output beam profile, and full divergence angle (FDA) were further studied. Higher-order modes are excited by bending the sample, inducing additional loss, decentralized beam profile, and larger FDA.

20.
Nanotechnology ; 20(50): 505607, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-19934484

ABSTRACT

This work demonstrates that it is possible to synthesize crystallized Ge nanostructures directly in an aqueous medium under ambient conditions by using widely available GeO2 (in the form of germanate ions) as a precursor. The reaction of germanate ions with NaBH4 in an aqueous medium resulted in highly hydrogenated Ge that could be transformed into crystallized Ge after an air-drying treatment. The NaBH4/GeO2 molar ratio, reaction time and drying temperature were optimized for the synthesis of crystallized Ge products. Furthermore, the reaction time has an influence on the size and shape of the final crystallized Ge products. A reaction time of 12 h could result in crystallized Ge powder samples that contain ultra-small (5-20 nm) particles and larger (50-100 nm) particles. By controlling the reaction time to 24 h, a Ge powder product consisting of worm-like crystallized Ge nanostructures with diameters of 10-80 nm and lengths up to 1000 nm was obtained. The possible reaction and growth mechanisms involved in this method were investigated. This new synthetic route may be a good candidate for synthesizing a wide variety of crystallized Ge nanomaterials and devices due to its low cost, low safety risk, facileness, high yield (above 70% and in gram scale) and convenience for adding other chemicals (i.e. dopants or morphology modifying agents) into the reaction system.

SELECTION OF CITATIONS
SEARCH DETAIL
...