Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 32(3-4): 75-86, 2023 02.
Article in English | MEDLINE | ID: mdl-36511391

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) are a promising therapeutic agent for various diseases, including sepsis. However, translating MSC therapy to clinical applications remains challenging due to variations in the properties of MSCs under different preparation conditions. In this study, the gene expression profiles of human adipose-derived mesenchymal stromal/stem cells (ADSCs) under different culture conditions were compared in relation to their therapeutic efficacy for sepsis. Results showed that ADSCs cultured in media supplemented with human platelet lysates (hPL) (hPL-ADSCs) exhibited a smaller cell size and higher proliferative capacity, whereas ADSCs cultured in media supplemented with fetal bovine serum (FBS) (FBS-ADSCs) showed a broader and flatter shape. Both hPL-ADSCs and FBS-ADSCs exhibited a protective effect in a mouse model of sepsis; however, hPL-ADSCs displayed a better potency for immunosuppressive function, as evidenced by a better improvement of survival rate and further reduction of tissue injury and infectious biomarkers (alanine transaminase and procalcitonin). Furthermore, hPL-ADSCs caused a more anti-inflammatory transcriptomic shift, whereas FBS-ADSCs led to more depression of proinflammatory transcriptomic response. This study thus demonstrates that both hPL-ADSCs and FBS-ADSCs are effective for antiseptic therapy via different mechanisms of inflammatory manipulation, although hPL-ADSCs may imply a better preference.


Subject(s)
Mesenchymal Stem Cells , Sepsis , Mice , Animals , Humans , Cell Culture Techniques/methods , Transcriptome/genetics , Cell Differentiation/genetics , Blood Platelets , Culture Media , Cell Proliferation/genetics , Cells, Cultured
2.
BMC Cardiovasc Disord ; 22(1): 407, 2022 09 11.
Article in English | MEDLINE | ID: mdl-36089604

ABSTRACT

BACKGROUND: Hypoxia inducible factor-1 (HIF-1) plays a key role in modulating post-infarct healing after myocardial ischemic injury through transcriptional regulation of hundreds of genes involved in diverse cardiac remodeling processes. However, the dynamic changes in HIF-1 target gene expression in the ischemic heart after myocardial infarction (MI) have not been well characterized. METHODS: We employed a rhesus monkey model of MI induced by left anterior descending artery ligation and examined the expression pattern of HIF-1 target genes in the ischemic heart at 1, 7, and 28 days after injury by bulk RNA-sequencing analysis. RESULTS: Myocardial transcriptomic analysis demonstrated a temporal-specific regulation of genes associated with the inflammatory response, cell proliferation, fibrosis and mitochondrial metabolism during the pathological progression of MI. HIF-1 target genes involved in processes related to glycolysis, angiogenesis, and extracellular matrix (ECM) remodeling also exhibited distinct expression patterns during MI progression. Copper concentrations were gradually decreased in the heart after ischemic injury, which was positively correlated with the expression of HIF-1-mediated angiogenic and glycolytic genes but negatively correlated with the expression of HIF-1-mediated ECM remodeling genes. Moreover, genes related to intracellular copper trafficking and storage were suppressed along with the loss of myocardial copper in the ischemic heart. CONCLUSIONS: This study demonstrated a dynamic, functional-specific regulation of HIF-1 target gene expression during the progression of MI. The fine-tuning of HIF-1 signaling in the ischemic heart may be relate to the alteration in myocardial copper homeostasis. These findings provide transcriptomic insights into the distinct roles of HIF-1 signaling in the heart after ischemic injury, which will help determine the beneficial cutoff point for HIF-1 targeted therapy in ischemic heart diseases.


Subject(s)
Copper , Myocardial Infarction , Animals , Heart , Macaca mulatta , Myocardial Infarction/complications , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...