Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 537(1): 125-32, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23871844

ABSTRACT

The characteristics of the Ca(2+)/H(+) exchange were directly investigated in functionally inverted (inside-out) plasma membrane vesicles isolated from yeast using an aqueous two-phase partitioning method. Results showed that following the generation of an inside-acid pH gradient (fluorescence quenching), addition of Ca(2+) caused movement of H(+) out of the vesicles (fluorescence recovery). The Ca(2+)/H(+) exchange displayed saturation kinetics with respect to extravesicular Ca(2+) and ATP concentrations in the plasma membrane, and showed specificity for Ca(2+). The protonophore FCCP (carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone), abolished the fluorescence quenching and consequently inhibited Ca(2+)/H(+) exchange in plasma membrane vesicles. Vanadate, which is known to inhibit the plasma membrane H(+)-ATPase, significantly decreased the Ca(2+)-dependent transport of H(+) out of vesicles. When the electrical potential across the plasma membrane was dissipated with valinomycin and potassium, the rate of Ca(2+)/H(+) exchange increased compared to that of the control without valinomycin, indicating that the stoichiometric ratio for this exchange is greater than 2H(+):Ca(2+). These data suggest that Ca(2+) is transported out of yeast cells through a Ca(2+)/H(+) exchange system that is driven by the proton-motive force generated by the plasma membrane H(+)-ATPase.


Subject(s)
Adenosine Triphosphate/metabolism , Antiporters/metabolism , Calcium/metabolism , Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Hydrogen/metabolism , Ion Channel Gating/physiology , Saccharomyces cerevisiae/metabolism , Hydrogen-Ion Concentration , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...