Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 22(1): 991, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115953

ABSTRACT

BACKGROUND: Colorectal cancer is the third most common cause of death among cancers in the world. Although improvements in various treatments have greatly improved the survival time of colorectal cancer patients, since colorectal cancer is often at an advanced stage when diagnosed, the prognosis of patients is still very poor. Since the ceRNA regulatory network was proposed in 2011, it has greatly promoted the study of the molecular mechanism of colorectal cancer occurrence and development. OBJECTIVE: Exploring the new molecular mechanism of colorectal cancer occurrence and development and providing new targets for the diagnosis and treatment of colorectal cancer. METHOD: We analyzed the RNA-seq data of CRC from TCGA, such as differential expression analysis, weighted gene co-expression network analysis (WGCNA) and construction of ceRNA regulatory network. RESULTS: We constructed a ceRNA network using RNA-seq data of CRC from TCGA. In the ceRNA regulatory network, 19 hub molecules with significant prognostic effects were ultimately identified, including 8 lncRNAs, 2 mRNAs and 9 miRNAs. These hub molecules constitute the lncRNA-miRNA, miRNA-mRNA or lncRNA-miRNA-mRNA axis. CONCLUSION: In this article, some new ceRNA regulatory axes have been discovered, which may potentially disclose new molecular mechanisms for the occurrence and development of colorectal cancer, thereby providing an important blueprint for the treatment and prognosis assessment of CRC patients.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Biomarkers , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Front Genet ; 12: 629856, 2021.
Article in English | MEDLINE | ID: mdl-34017352

ABSTRACT

AIMS: Chaperonin-containing TCP1 subunit (CCT) 6A is an oncogenic 6th subunit of the CCT family. Nevertheless, not much is documented regarding its function in colorectal cancer (COAD). This investigation seeks to explore the role of CCT6A in the prognosis of COAD. MAIN METHODS: Sequencing data from the Gene Expression Omnibus (GEO) and Cancer Genome Atlas database (TCGA) were employed to analyze the expression of CCT6A and its involvement in various regulatory networks behind COAD. Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) analyzed Levels of expression and survival rates, while GEPIA was used to uncover further the functional networks that involved CCT6A. Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools were used to interpret Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. Evaluation of the expression levels of CCT6A in COAD samples was also verified via immunohistochemistry. KEY FINDINGS: We found that the expression of CCT6A is up-regulated in COAD. CCT6A correlated with poor prognosis and decreased immune infiltrates such as CD4+ T cells, B cells, and dendritic cells. CCT6A is increased in COAD patients. CCT6A is associated with several gene networks related to the DDX family and mismatch repair pathways. SIGNIFICANCE: Our data showed that data mining was able to uncover data regarding levels of CCT6A and its involvement in genetic regulating pathways in COAD.

SELECTION OF CITATIONS
SEARCH DETAIL
...