Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Asian J Psychiatr ; 99: 104137, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959836

ABSTRACT

Executive impairment in schizophrenia is common, but the mechanism remains unclear. This is the first study to use simultaneously functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in schizophrenia during the MATRICS Consensus Cognitive Battery (MCCB). Here, we monitored relative changes in oxyhemoglobin concentration in the medial prefrontal cortex (mPFC) during Trail Making Test, Symbol Coding Test and Mazes Test of the MCCB in 63 patients (29 females) with schizophrenia and 32 healthy controls (15 females). Results showed that patients with schizophrenia scored lower than healthy controls on all three tests (P < 0.001), but mPFC activation was significantly higher during the test (P < 0.03). Higher activation of the mPFC may reflect abnormal information processing in schizophrenia. In addition, the results also showed sex differences in hemodynamic activation during the task in patients with schizophrenia, and fNIRS has the potential to be a clinical adjunct to screening for cognitive function in schizophrenia.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123086, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37451210

ABSTRACT

Raman spectroscopy is a kind of vibrational method that can rapidly and non-invasively gives chemical structural information with the Raman spectrometer. Despite its technical advantages, in practical application scenarios, Raman spectroscopy often suffers from interference, such as noises and baseline drifts, resulting in the inability to acquire high-quality Raman spectroscopy signals, which brings challenges to subsequent spectral analysis. The commonly applied spectral preprocessing methods, such as Savitzky-Golay smooth and wavelet transform, can only perform corresponding single-item processing and require manual intervention to carry out a series of tedious trial parameters. Especially, each scheme can only be used for a specific data set. In recent years, the development of deep neural networks has provided new solutions for intelligent preprocessing of spectral data. In this paper, we first creatively started from the basic mechanism of spectral signal generation and constructed a mathematical model of the Raman spectral signal. By counting the noise parameters of the real system, we generated a simulation dataset close to the output of the real system, which alleviated the dependence on data during deep learning training. Due to the powerful nonlinear fitting ability of the neural network, fully connected network model is constructed to complete the baseline estimation task simply and quickly. Then building the Unet model can effectively achieve spectral denoising, and combining it with baseline estimation can realize intelligent joint processing. Through the simulation dataset experiment, it is proved that compared with the classic method, the method proposed in this paper has obvious advantages, which can effectively improve the signal quality and further ensure the accuracy of the peak intensity. At the same time, when the proposed method is applied to the actual system, it also achieves excellent performance compared with the common method, which indirectly indicates the effectiveness of the Raman signal simulation model. The research presented in this paper offers a variety of efficient pipelines for the intelligent processing of Raman spectroscopy, which can adapt to the requirements of different tasks while providing a new idea for enhancing the quality of Raman spectroscopy signals.

3.
Sci Total Environ ; 897: 165369, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37433335

ABSTRACT

Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Oryza/metabolism , Soil Pollutants/analysis , Plant Breeding , Soil
4.
Ecotoxicol Environ Saf ; 247: 114244, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36326557

ABSTRACT

Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.


Subject(s)
Cadmium , Oryza , Zea mays , Soil , Bioaccumulation
5.
Huan Jing Ke Xue ; 43(7): 3799-3810, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791563

ABSTRACT

An extensive investigation of heavy metal (Cd, Hg, As, Pb, and Cr) levels in 137 pairs of soil-maize/rice samples was conducted in cultivated land from a typical karst mountain area in the Northwest of Guizhou Province. A health risk assessment model was used to assess the health risks of those areas, and the environmental benchmarks of heavy metals in soils were evaluated using the species sensitivity distribution (SSD) model. The results showed that the soils of maize and rice were polluted by heavy metals. Cd was the primary pollutant, with an exceeding rate ranging from 87% to 445%. The contaminated level of maize fields was higher than those of rice fields. In contrast, only 3.51% and 13.4% of Cd content in maize kernels and rice grains exceeded the national threshold, and the Cd heavy metal accumulation ability of rice was higher than that of maize. The carcinogenic and non-carcinogenic risks of heavy metals for adults and children in the study area were at a low level. The carcinogenic risk of rice consumption was slightly higher than that of maize, and the health risk to children was higher than that to adults. The results derived from the SSD method showed that the 95% and 5% hazardous concentrations (HC5 and HC95) of maize fields were 0.67 for Cd, 771.99 for As, 40.85 for Pb and 609.88 for Cr mg·kg-1, and HC95were 48.47 for Cd, 159.67 for As, 1735.68 for Pb and 1671.74 for Cr mg·kg-1, respectively. The HC5 values of rice fields were 2.42 for Cd, 8.88 for As, 41.41 for Pb and 27.84 for Cr mg·kg-1, and the HC95 values were 48.47 for Cd, 159.67 for As, 1735.68 for Pb and 1671.74 for Cr mg·kg-1, respectively. The HC5 values of Cd, As, and Cr in maize fields and Cd in rice fields were significantly higher than the soil risk screening values in the current standard, and the HC95 values of the two fields were higher than the soil risk intervened values. The results indicated that the current standard would be too strict to evaluate the actual pollution level of soil heavy metals in this area.


Subject(s)
Metals, Heavy , Oryza , Adult , Benchmarking , Cadmium , Carcinogens , Child , Humans , Lead , Risk Assessment , Soil , Zea mays
6.
Bull Environ Contam Toxicol ; 109(4): 643-650, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35908112

ABSTRACT

To investigate the dynamic effects of organic fertilizer application on the agronomic traits of rice (Oryza sativa L.), soil physicochemical properties and soil Cd activity under excess cadmium (Cd) exposure, this study was conducted to simulate a paddy system under different organic fertilizer application rates using exogenous spiked Cd soil as the test soil and conducting a rice pot experiment. The obtained results showed that the application of organic fertilizer increased the number of rice tillers, rice plant height, total grain number and total grain weight at maturity in all treated soils, while it decreased the concentration of Cd in brown rice. The application of organic fertilizer increased the organic matter (OM), redox potential and electrical conductivity of all treated soils but decreased the pH and TCLP-extractable Cd of all treated soils. There was a significant or highly significant negative correlation (p < 0.05 or p < 0.01) between soil TCLP-extractable Cd and soil OM throughout the experimental period, implying that soil OM may be an important factor influencing the changes in Cd activity in soil. In addition, our experiment also examined in detail the dynamic change process of the abovementioned indicators throughout the experimental period and observed that the dynamic change process of soil Cd activity could be described as a trend of first decreasing and then gradually increasing throughout the rice reproductive period.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Fertilizers/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
7.
J Dairy Sci ; 103(5): 3994-4001, 2020 May.
Article in English | MEDLINE | ID: mdl-32113767

ABSTRACT

This study was conducted to reveal the prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products including powdered infant formula, raw milk, pasteurized milk, ultra-high-temperature milk, and cheese. Five hundred samples collected from 5 provinces in China were analyzed in overall experiments. Multilocus sequence typing, distribution of toxin genes, and antibiotic susceptibility of the isolates were analyzed. Fifty-four B. cereus strains were detected; of these, 13 isolates (26%) were from raw milk, 12 isolates (12%) from pasteurized milk, 10 isolates (10%) from cheese, 12 isolates (8%) from ultra-high-temperature milk, and 7 isolates (7%) from powdered infant formula. These isolates were divided into 24 sequence types (ST); among them, ST24, ST26, ST82, ST142, ST377, ST857, and ST1046 were the main dominant ST. The results of detection of toxin genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, hlyII, and cesB) showed that 94.4% isolates carried nheABC genes, whereas only 11.1% of the isolates contained the hblACD gene cluster. In addition, detection rates of cytK, bceT, entFM, hlyII, and cesB genes were 75.9, 77.8, 85.2, 53.7, and 11.1%, respectively. The antibiotic susceptibility test indicated that most of B. cereus isolates were resistant to ampicillin, penicillin, cefepime, cephalothin, and oxacillin, and were susceptible to gentamicin, chloramphenicol, imipenem, tetracycline, ciprofloxacin, trimethoprim-sulfamethoxazole, erythromycin, kanamycin, and cefotetan. Therefore, this study revealed the prevalence and characteristics of B. cereus isolated from dairy products in China, indicating the potential risk and contributing to the effective prevention and control of this pathogen.


Subject(s)
Bacillus cereus/isolation & purification , Bacillus cereus/physiology , Dairy Products/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/genetics , China , Food Contamination , Food Microbiology , Milk/chemistry , Milk/microbiology , Prevalence
8.
Food Funct ; 10(12): 8116-8128, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31746888

ABSTRACT

It has been revealed in our previous studies that trypsin scavenges superoxide anions. In the current study, the mechanisms of storage quality improvement by trypsin were evaluated in H. undatus. Strikingly, the improvement is due not to its antibacterial or antifungal activity but to its superoxide scavenging activity. Moreover, trypsin significantly decreased the levels of ROS, cell permeability and membrane lipid peroxidation. The activities of major antioxidant enzymes were significantly improved by trypsin treatment. Transcriptome profiles of H. undatus treated with trypsin revealed the pathways and regulatory mechanisms of antioxidant genes up or down-regulated following trypsin treatment by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The results of protein-protein interaction networks indicated that CAT is the key among the enzymes of the complicated antioxidant system. In addition, the current results showed that the synergistic effect of trypsin with antioxidant enzymes can regulate the levels of endogenous active oxygen species, reduce malondialdehyde content, improve cell membrane integrity, alleviate cell damage and delay fruit ageing.


Subject(s)
Antioxidants/metabolism , Cactaceae/chemistry , Cactaceae/genetics , Fruit/chemistry , Plant Proteins/genetics , Trypsin/chemistry , Antioxidants/analysis , Cactaceae/metabolism , Food Preservation/methods , Food Storage , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Gene Ontology , Malondialdehyde/analysis , Malondialdehyde/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...