Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13832, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879634

ABSTRACT

In cold areas, the steel fiber reinforced rubber concrete (SFRRC) pavement is exposed to natural environment and experiences varying degrees of damage from freezing and thawing. This can have a serious impact on the normal usage and safe operation of the pavement structure. This research examines the impact of varying rubber concentrations on multiple variables, such as the rate of mass reduction, relative dynamic modulus of elasticity, compressive strength, and thickness of the damage layer (Hf) during freeze-thaw (F-T) durability testing conducted on SFRRC. Furthermore, an analysis is conducted to determine the degradation pattern exhibited by SFRRC. The internal structure evolution and pore structure characteristics of SFRRC were examined using scanning electron microscopy and mercury intrusion porosimetry techniques, which revealed the underlying damage mechanism in SFRRC during F-T cycles. The results suggest that the addition of an appropriate amount of rubber can effectively enhance the frost resistance of SFRRC in water. A gradual improvement in the frost resistance of SFRRC is observed when increasing the rubber content from 0 to 10%. The optimal frost resistance is observed in SFRRC with 10% rubber content. However, when the rubber content reaches 15%, SFRRC exhibits significant degradation and lower level of resistance to freezing compared to SFRRC without rubber. Microcracks form within SFRRC due to the freezing-thawing forces experienced during the experiment, resulting in the development of a damage layer that extends from the surface to the interior. The compressive strength of the damaged layer significantly decreases as Hf increases. The addition of appropriate rubber in SFRRC improves its pore structure, leading to an increased proportion of harmless or less harmful pores and a reduction in average pore size, thereby significantly enhancing its frost resistance.

2.
Polymers (Basel) ; 15(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37376287

ABSTRACT

FRP (fiber-reinforced polymer)-concrete-steel double-skin square tubular (FCSST) columns are composed of an outside FRP tube, an inside steel tube and the concrete filled between them. Under the continuous constraint of the outside and inside tube, the strain, strength and ductility of concrete are improved significantly compared with those of traditionally reinforced concrete without lateral restraint. Additionally, the outside and inside tube not only function as the permanent formwork in casting but improve the bending and shear resistance of composite columns. Meanwhile, the hollow core also reduces the weight of the structure. Through the compressive testing of 19 FCSST columns subjected to eccentric load, this study focuses on the influence of eccentricity and layers of axial FRP cloth (away from the loading point) on the evolution of axial strain along the cross-section, axial bearing capacity, axial load-lateral deflection curve and other eccentric properties. The results can provide basis and reference for the design and construction of FCSST columns and are of great theoretical significance and practical value for the application of composite columns in the engineering of structures in a corrosive environment and other harsh conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...