Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24396-24405, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882171

ABSTRACT

Aiming at the problem of transportation for heavy oil during the middle-later development stages of the Lvda oilfield, based on the self-developed design of a visual circulating flow experimental apparatus for heavy oil-water two-phase flow-the flow regime characteristics and corresponding drag properties of the two-phase flow of Lvda viscous oil, which is simulated by 500# industrial white oil and water in a horizontal pipeline are investigated experimentally. According to the Kelvin-Helmholtz instability theory, the flow pattern transition criteria from stratified flow to annular flow (AF) are proposed. The effects of 0.11-0.90 m/s oil superficial velocities, 0.06-1.49 m/s water superficial velocities, and 0.09-0.93 input water cuts on the drag reduction effect of different flow regimes are analyzed. The experimental results indicated that with the increase of mixing velocity and water volume fraction, stratified flow, AF, oil plug flow, and dispersed oil lump flow are successively observed in the horizontal heavy oil-water two-phase flow, in which AF is the main flow pattern. As the Froude number increases to 4.0, the input water volume fraction does not change any more and remains at about 10% of the total flow rate in the process of converting from stratified flow to AF. The four delivery approaches can archive the reduction of transportation resistance for heavy oil at different degrees, in which the transportation of heavy oil surrounded by a water ring has the best effect of drag reduction. At the optimal working conditions of 0.61 m/s oil superficial velocity, 0.07 m/s water superficial velocity, and 0.10 input water cut, the pressure drop of water annulus conveying for heavy oil is only 1/62.54 of that of separate transport for pure heavy oil under the same oil flow rate.

2.
ACS Omega ; 9(13): 15439-15448, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585087

ABSTRACT

Aiming at the problem of restart-up for a heavy oil-water ring transportation pipeline due to instability and damage of the water ring, based on the self-developed design of a small indoor loop simulation experimental device and taking four kinds of ordinary heavy oil in the Lvda oilfield as the research object, the change trend of restart-up pressure drop with time is experimentally studied when the pipeline is restarted-up after shutdown at a constant water flow. On the basis of the regression analysis of the orthogonal restart-up experimental data of four factors (oil holdup, oil viscosity, standstill period, and water cleaning superficial velocity) and mixed levels by the statistical product and service solutions statistical analysis software, a multivariate nonlinear restart-up maximum pressure drop prediction model is established. Through analysis of the characteristics of each stage of the restart-up process, an exponential decay model of restart-up pressure drop with time is created. The research results show that the variations in restart-up pressure drop with time can be divided into two stages: the attenuation stage and the equilibrium stage. The predicted value of restart-up pressure drop with time is in good agreement with the measured one, and the goodness of fit is very close to 1. The maximum restart-up pressure drop rises along with the increase in oil holdup, oil viscosity, standstill period, and water cleaning superficial velocity. The restart-up time prolongs with the increase in oil holdup, oil viscosity, and standstill period but shortens with the increase in water cleaning superficial velocity.

3.
ACS Omega ; 5(17): 9870-9884, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32391474

ABSTRACT

Conventional methods for pipeline transportation of heavy or extraheavy crude oils adopt heating, water blending, and dilution, and several methods are generally required to be used simultaneously to ensure normal transportation. However, how to determine the optimal transport boundary conditions for heavy oils is still one of the technical challenges. In this paper, the circulating piping experiment at different water contents (0-90 wt % with an interval of 10 wt %) and temperatures (65-90 °C with an interval of 5 °C) of three heavy oils from the Xinjiang oilfield is carried out. The apparent viscosity calculated from the experimental data of the circulating pipeline shows that when the water content is below the phase inversion point, the apparent viscosity increases and when the water content is close to the phase inversion point, the apparent viscosity increases nearly three times. Only when the water content is greater than the phase inversion point, the apparent viscosity shows a downward trend. Also, then, various viscosity prediction models with different independent variables, which mainly included temperature, water content, and dilution ratio, are selected and verified. Based on experimental data of six crude oils, a prediction model of the phase inversion point is established. Simultaneously, a method for determining the boundary conditions of heavy oils using the combined methods of heating, water blending, and dilution is proposed, while a set of simple decision diagrams of boundary conditions for heavy oil is also described. Finally, verified by the heavy oil pipeline of the Bohai LvDa oilfield, the gathering and transportation limits determined by this method are consistent with the operating parameters of the oilfield.

SELECTION OF CITATIONS
SEARCH DETAIL
...