Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5044, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598222

ABSTRACT

Meiotic recombination requires the specific RecA homolog DMC1 recombinase to stabilize strand exchange intermediates in most eukaryotes. Normal DMC1 levels are crucial for its function, yet the regulatory mechanisms of DMC1 stability are unknown in any organism. Here, we show that the degradation of Arabidopsis DMC1 by the 26S proteasome depends on F-box proteins RMF1/2-mediated ubiquitination. Furthermore, RMF1/2 interact with the Skp1 ortholog ASK1 to form the ubiquitin ligase complex SCFRMF1/2. Genetic analyses demonstrate that RMF1/2, ASK1 and DMC1 act in the same pathway downstream of SPO11-1 dependent meiotic DNA double strand break formation and that the proper removal of DMC1 is crucial for meiotic crossover formation. Moreover, six DMC1 lysine residues were identified as important for its ubiquitination but not its interaction with RMF1/2. Our results reveal mechanistic insights into how the stability of a key meiotic recombinase that is broadly conserved in eukaryotes is regulated.


Subject(s)
Arabidopsis , Meiosis , Arabidopsis/genetics , Eukaryota , Lysine , Recombinases/genetics
2.
Curr Biol ; 32(21): R1235-R1237, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36347233

ABSTRACT

A meiotic-specific structure, the synaptonemal complex, regulates meiotic recombination, but the 'language' used for this regulation has yet to be fully decoded. A new study identifies a novel phosphorylation site on the synaptonemal complex that regulates DNA repair pathway choice, revealing a new corner of the 'Rosetta Stone' for meiosis.


Subject(s)
Recombination, Genetic , Synaptonemal Complex , Meiosis
3.
Nat Commun ; 13(1): 5999, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224180

ABSTRACT

Meiotic crossovers are limited in number and are prevented from occurring close to each other by crossover interference. In many species, crossover number is subject to sexual dimorphism, and a lower crossover number is associated with shorter chromosome axes lengths. How this patterning is imposed remains poorly understood. Here, we show that overexpression of the Arabidopsis pro-crossover protein HEI10 increases crossovers but maintains some interference and sexual dimorphism. Disrupting the synaptonemal complex by mutating ZYP1 also leads to an increase in crossovers but, in contrast, abolishes interference and disrupts the link between chromosome axis length and crossovers. Crucially, combining HEI10 overexpression and zyp1 mutation leads to a massive and unprecedented increase in crossovers. These observations support and can be predicted by, a recently proposed model in which HEI10 diffusion along the synaptonemal complex drives a coarsening process leading to well-spaced crossover-promoting foci, providing a mechanism for crossover patterning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Crossing Over, Genetic , Meiosis , Synaptonemal Complex
4.
New Phytol ; 235(1): 157-172, 2022 07.
Article in English | MEDLINE | ID: mdl-35322878

ABSTRACT

Meiosis is an essential reproductive process to create new genetic variation. During early meiosis, higher order chromosome organization creates a platform for meiotic processes to ensure the accuracy of recombination and chromosome segregation. However, little is known about the regulatory mechanisms underlying dynamic chromosome organization in plant meiosis. Here, we describe abnormal chromosome organization in zygotene1 (ACOZ1), which encodes a canonical F-box protein in maize. In acoz1 mutant meiocytes, chromosomes maintain a leptotene-like state and never compact to a zygotene-like configuration. Telomere bouquet formation and homologous pairing are also distorted and installation of synaptonemal complex ZYP1 protein is slightly defective. Loading of early recombination proteins RAD51 and DMC1 is unaffected, indicating that ACOZ1 is not required for double strand break formation or repair. However, crossover formation is severely disturbed. The ACOZ1 protein localizes on the boundary of chromatin, rather directly to chromosomes. Furthermore, we identified that ACOZ1 interacts with SKP1 through its C-terminus, revealing that it acts as a subunit of the SCF E3 ubiquitin/SUMO ligase complex. Overall, our results suggest that ACOZ1 functions independently from the core meiotic recombination pathway to influence crossover formation by controlling chromosome compaction during maize meiosis.


Subject(s)
F-Box Proteins , Zea mays , Chromosome Pairing , Chromosome Segregation/genetics , Chromosomes , F-Box Proteins/genetics , Meiosis , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Synaptonemal Complex/metabolism , Zea mays/genetics , Zea mays/metabolism
5.
Front Plant Sci ; 12: 626528, 2021.
Article in English | MEDLINE | ID: mdl-33719299

ABSTRACT

RAD17, a replication factor C (RFC)-like DNA damage sensor protein, is involved in DNA checkpoint control and required for both meiosis and mitosis in yeast and mammals. In plant, the meiotic function of RAD17 was only reported in rice so far. Here, we identified and characterized the RAD17 homolog in maize. The Zmrad17 mutants exhibited normal vegetative growth but male was partially sterile. In Zmrad17 pollen mother cells, non-homologous chromosome entanglement and chromosome fragmentation were frequently observed. Immunofluorescence analysis manifested that DSB formation occurred as normal and the loading pattern of RAD51 signals was similar to wild-type at the early stage of prophase I in the mutants. The localization of the axial element ASY1 was normal, while the assembly of the central element ZYP1 was severely disrupted in Zmrad17 meiocytes. Surprisingly, no obvious defect in female sterility was observed in Zmrad17 mutants. Taken together, our results suggest that ZmRAD17 is involved in DSB repair likely by promoting synaptonemal complex assembly in maize male meiosis. These phenomena highlight a high extent of divergence from its counterpart in rice, indicating that the RAD17 dysfunction can result in a drastic dissimilarity in meiotic outcome in different plant species.

6.
Plant Physiol ; 184(4): 1811-1822, 2020 12.
Article in English | MEDLINE | ID: mdl-33077613

ABSTRACT

The meiotic TopoVI B subunit (MTopVIB) plays an essential role in double-strand break formation in mouse (Mus musculus), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), and recent work reveals that rice MTopVIB also plays an unexpected role in meiotic bipolar spindle assembly, highlighting multiple functions of MTopVIB during rice meiosis. In this work, we characterized the meiotic TopVIB in maize (Zea mays; ZmMTOPVIB). The ZmmtopVIB mutant plants exhibited normal vegetative growth but male and female sterility. Meiotic double-strand break formation was abolished in mutant meiocytes. Despite normal assembly of axial elements, mutants showed severely affected synapsis and disrupted homologous pairing. Importantly, we showed that bipolar spindle assembly was also affected in ZmmtopVIB, resulting in triad and polyad formation. Overall, our results demonstrate that ZmMTOPVIB plays critical roles in double-strand break formation and homologous recombination. In addition, our results suggest that the function of MTOPVIB in bipolar spindle assembly is likely conserved across different monocots.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis/genetics , Meiosis/physiology , Synaptonemal Complex/genetics , Synaptonemal Complex/physiology , Zea mays/genetics , Zea mays/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant
7.
Int J Mol Sci ; 20(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694261

ABSTRACT

Radiation sensitive 51 (RAD51) recombinases play crucial roles in meiotic double-strand break (DSB) repair mediated by homologous recombination (HR) to ensure the correct segregation of homologous chromosomes. In this study, we identified the meiotic functions of ZmRAD51C, the maize homolog of Arabidopsis and rice RAD51C. The Zmrad51c mutants exhibited regular vegetative growth but complete sterility for both male and female inflorescence. However, the mutants showed hypersensitivity to DNA damage by mitomycin C. Cytological analysis indicated that homologous chromosome pairing and synapsis were rigorously inhibited, and meiotic chromosomes were often entangled from diplotene to metaphase I, leading to chromosome fragmentation at anaphase I. Immunofluorescence analysis showed that although the signals of the axial element absence of first division (AFD1) and asynaptic1 (ASY1) were normal, the assembly of the central element zipper1 (ZYP1) was severely disrupted. The DSB formation was normal in Zmrad51c meiocytes, symbolized by the regular occurrence of γH2AX signals. However, RAD51 and disrupted meiotic cDNA 1 (DMC1) signals were never detected at the early stage of prophase I in the mutant. Taken together, our results indicate that ZmRAD51C functions crucially for both meiotic DSB repair and homologous recombination in maize.


Subject(s)
DNA Repair , Homologous Recombination , Plant Proteins/genetics , Rad51 Recombinase/genetics , Zea mays/genetics , DNA Breaks, Double-Stranded , Meiosis , Mutation , Plant Proteins/metabolism , Rad51 Recombinase/metabolism , Zea mays/cytology , Zea mays/growth & development , Zea mays/metabolism
8.
Int J Mol Sci ; 20(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547623

ABSTRACT

Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.


Subject(s)
DNA Breaks, Double-Stranded , Homologous Recombination/physiology , Meiosis/physiology , Plants/metabolism , DNA Topoisomerases, Type II/metabolism , Endodeoxyribonucleases/metabolism , Plant Proteins/metabolism
9.
Front Plant Sci ; 9: 1005, 2018.
Article in English | MEDLINE | ID: mdl-30061907

ABSTRACT

CtIP/Ctp1/Sae2/Com1, a highly conserved protein from yeast to higher eukaryotes, is required for DNA double-strand break repair through homologous recombination (HR). In this study, we identified and characterized the COM1 homolog in maize. The ZmCom1 gene is abundantly expressed in reproductive tissues at meiosis stages. In ZmCom1-deficient plants, meiotic chromosomes are constantly entangled as a formation of multivalents and accompanied with chromosome fragmentation at anaphase I. In addition, the formation of telomere bouquet, homologous pairing and synapsis were disturbed. The immunostaining assay showed that the localization of ASY1 and DSY2 was normal, while ZYP1 signals were severely disrupted in Zmcom1 meiocytes, indicating that ZmCom1 is critically required for the proper SC assembly. Moreover, RAD51 signals were almost completely absent in Zmcom1 meiocytes, implying that COM1 is required for RAD51 loading. Surprisingly, in contrast to the Atcom1 and Oscom1 mutants, Zmcom1 mutant plants exhibited a number of vegetative phenotypes under normal growth condition, which may be partly attributed to mitotic aberrations including chromosomal fragmentation and anaphase bridges. Taken together, our results suggest that although the roles of COM1 in HR process seem to be primarily conserved, the COM1 dysfunction can result in the marked dissimilarity in mitotic and meiotic outcomes in maize compared to Arabidopsis and rice. We suggest that this character may be related to the discrete genome context.

SELECTION OF CITATIONS
SEARCH DETAIL
...