Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 629(Pt B): 511-521, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36174294

ABSTRACT

The huge volumetric expansion (>300 %) of Si that occurs during the charge-discharge process makes it to have poor cycling ability and weak stable structure. These factors are considered as critical obstacles to the further development of Si as anode for lithium-ion batteries (LIBs). Herein, novel 3D interpenetrating microspheres, i.e., Si@C-CNTs, which consist of silicon nanoparticles interpenetrated with carbon nanotubes (CNTs) and stuck with amorphous carbon (C) have been designed and prepared via a spray-drying assisted approach. As anode of LIBs, Si@C-CNTs microspheres can achieve high silicon loadings of around 86 % and a high initial coulomb efficiency of 80.8 %. The electrodes maintain a reversible specific capacity of 1585.9mAh/g at 500 mA g-1 after 200 cycles, and deliver an excellent rate capability of 756.4 mAh/g at 5 A g-1. The outstanding performance of Si@C-CNTs can be due to their 3D interpenetrating structure and the synergy effect between the CNTs network and amorphous carbon therein. They synergistically act as conductive matrices which significantly improve the conductivity of the composite; they also act binders and reinforcing skeleton which help the composite spheres to have stable structure. Especially, the latter (reinforcing skeleton) alleviates the volumetric effect induced by the expansion and shrinkage of silicon particles during lithiation. The unique architecture provides an ideal model that can be used to design Si-based composite anode for advanced LIBs.

2.
ACS Nano ; 16(8): 12425-12436, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35950963

ABSTRACT

1T-phase MoS2 is a promising electrode material for electrochemical energy storage due to its metallic conductivity, abundant active sites, and high theoretical capacity. However, because of the habitual conversion of metastable 1T to stable 2H phase via restacking, the poor rate capacity and cycling stability at high current densities hamper their applications. Herein, a synergetic effect of electron-injection engineering and atomic-interface engineering is employed for the formation and stabilization of defected 1T-rich MoS2 nanoflowers. The 1T-rich MoS2 and carbon monolayers are alternately intercalated with each other in the nanohybrids. The metallic 1T-phase MoS2 and conductive carbon monolayers are favorable for charge transport. The expanded interlayer spacing ensures fast electrolyte diffusion and the decrease of the ion diffusion barrier. The obtained defected 1T-rich MoS2/m-C nanoflowers exhibit high Na-storage capacity (557 mAh g-1 after 80 cycles at 0.1 A g-1), excellent rate capacity (411 mAh g-1 at 10 A g-1), and long-term cycling performance (364 mAh g-1 after 1000 cycles at 2 A g-1). Furthermore, a Na-ion full cell composed of the 1T-rich MoS2/m-C anode and Na3V2(PO4)3/C cathode maintains excellent cycling stability at 0.5 A g-1 during 400 cycles. Theoretical calculations are also performed to evaluate the phase stability, electronic conductivity, and Na+ diffusion behavior of 1T-rich MoS2/m-C. The energy storage performance demonstrates its excellent application prospects.

3.
ACS Omega ; 3(1): 1329-1337, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457969

ABSTRACT

Hollow structures and doping of rutile TiO2 are generally believed to be effective ways to enhance the performance of lithium-ion batteries. Herein, uniformly distributed Sn-doped rutile TiO2 hollow nanocrystals have been synthesized by a simple template-free hydrothermal method. A topotactic transformation mechanism of solid TiOF2 precursor is proposed to illustrate the formation of rutile TiO2 hollow nanocrystals. Then, the Sn-doped rutile TiO2 hollow nanocrystals are calcined and tested as anode in the lithium-ion battery. They deliver a highly reversible specific capacity of 251.3 mA h g-1 at 0.1 A g-1 and retain ∼110 mA h g-1 after 500 cycles at a high current rate 5 A g-1 (30 C), which is much higher than most of the reported work.

SELECTION OF CITATIONS
SEARCH DETAIL
...