Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38969882

ABSTRACT

The construction of ecological security pattern (ESP) holds paramount importance in ensuring regional environment sustainability. This study introduces an innovative approach to ESP construction grounded in landscape ecological risk (LER) assessment, with Wu-Chang-Shi urban agglomeration in Xinjiang, China, serving as a case study. Initially, LER within the area was evaluated using the LER Index (LERI) method. Subsequently, the Geodetector model was employed to discern the relationship between multi-source data and LER. Furthermore, ecological resistance and corridors were delineated utilizing the minimum cumulative resistance (MCR) model. Lastly, the corridors were optimized using the gravity model, finalizing the ESP construction. Study results reveal that LER was always fluctuating from 1990 to 2010, and tended to stabilize from 2010 to 2020. Factor detection underscores the predominant influence of land use on LER, followed by elevation and vegetation distribution. The ESP shows the imperative for improving connectivity of the natural areas that are fragmented by urban land, highlighting the great significance of the woodland-originating corridors. Finally, strategies are proposed to enhance woodland and water coverage, boost landscape diversity in nature reserves, and prioritize ecological conservation in corridor regions. In summation, the study furnishes a framework for analyzing arid regions in Eurasia. Furthermore, the research idea of evaluation-analysis-remodeling also offers insights into environmental management in developing areas with more diverse climate types.

2.
J Clin Microbiol ; 61(6): e0119722, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37154731

ABSTRACT

African swine fever (ASF) is one of the most lethal and devastating diseases of domestic and wild swine. The continual spread and frequent outbreaks of ASF have seriously threatened the pig and pig-related industries, causing great socioeconomic losses at unprecedented proportions. Although ASF has been documented for a century, no effective vaccine or antiviral treatment is currently available. Nanobodies (Nbs) derived from heavy-chain-only antibodies in camelids have been discovered to be effective as therapeutics and robust biosensors in imaging and diagnostic applications. In the present study, a high-quality phage display library containing specific Nbs raised against ASFV proteins was successfully constructed, and 19 nanobodies specific to ASFV p30 were preliminarily identified by phage display technology. After extensive evaluation, nanobodies Nb17 and Nb30 were employed as immunosensors and applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of ASFV in clinical specimens. This immunoassay showed a detection limit of approximately 1.1 ng/mL target protein and 102.5 hemadsorption (HAD50/mL) of ASFV and exhibited high specificity with no cross-reaction with the other porcine viruses tested. The performances of the newly developed assay and a commercial kit in testing 282 clinical swine samples were very similar (93.62% agreement). However, the novel sandwich Nb-ELISA showed higher sensitivity than the commercial kit when serial dilutions of ASFV-positive samples were tested. The present study describes a valuable alternative technique for the detection and surveillance of ASF in endemic regions. Furthermore, additional nanobodies specific to ASFV may be developed using the generated VHH library and employed in different biotechnology fields.


Subject(s)
African Swine Fever Virus , African Swine Fever , Bacteriophages , Biosensing Techniques , Single-Domain Antibodies , Swine , Animals , African Swine Fever/diagnosis , Immunoassay
3.
Front Microbiol ; 13: 1017792, 2022.
Article in English | MEDLINE | ID: mdl-36312984

ABSTRACT

African swine fever virus (ASFV) is a large and very complex DNA virus. The major capsid protein p72 is the most predominant structural protein and constitutes the outmost icosahedral capsid of the virion. In the present study, the nanobodies against ASFV p72 protein were screened from a camelid immune VHH library by phage display technique. Nine distinct nanobodies were identified according to the amino acid sequences of the complementary determining regions (CDRs), and contain typical amino acid substitutions in the framework region 2 (FR2). Six nanobodies were successfully expressed in E. coli, and their specificity and affinity to p72 protein were further evaluated. The results showed that nanobodies Nb25 had the best affinity to both recombinant and native p72 protein of ASFV. The Nb25 possesses an extremely long CDR3 with 23 amino acids compared with other nanobodies, which may allow this nanobody to access the hidden epitopes of target antigen. Furthermore, the Nb25 can specifically recognize the virus particles captured by polyclonal antibody against ASFV in a sandwich immunoassay, and its application as a biosensor to target virus in PAM cells was verified by an immunofluorescence assay. Nanobodies have been proven to possess many favorable properties with small size, high affinity and specificity, easier to produce, low costs and deep tissue penetration that make them suitable for various biotechnological applications. These findings suggest that nanobody Nb25 identified herein could be a valuable alternative tool and has potential applications in diagnostic and basic research on ASFV.

4.
Mar Drugs ; 17(4)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991714

ABSTRACT

In the study, the protective effect of plasma protein from Tachypleus tridentatus (PPTT) on acute kidney injury (AKI) and the related molecular mechanisms were first investigated by Western blotting analyses, TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, and immunohistochemistry. It was found that PPTT had an obviously inhibitory effect on Reactive oxygen species (ROS) in cyclophosphamide (CTX)-exposed mice. Furthermore, results demonstrated that the renal cell death mode is due to inducing apoptosis and autophagy inhibited by dose-dependent PPTT in mice treated with CTX by decreasing the protein expression of bax, beclin-1, and LC3 and increasing the expression of bcl-2. Moreover, the p38 MAPK and PI3K/Akt signaling pathways were observed to take part in the PPTT-induced renal cell growth effect by enhancing the upregulation of the expression of Akt and p-Akt as well as the downregulation of the expression of p38 and p-p38, which indicated a PPTT ameliorating effect on AKI CTX-induced in mice through p38 MAPK and PI3K/Akt signaling pathways. Briefly, this article preliminarily studies the mechanism of the PPTT ameliorating effect on AKI CTX-induced in mice, which helps to provide a reference for PPTT clinical application in AKI therapy.


Subject(s)
Acute Kidney Injury/drug therapy , Blood Proteins/pharmacology , Horseshoe Crabs/chemistry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Beclin-1/metabolism , Blood Proteins/isolation & purification , Cyclophosphamide/pharmacology , Disease Models, Animal , Female , Horseshoe Crabs/metabolism , Male , Mice , Microtubule-Associated Proteins/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factor TFIIH , Transcription Factors/metabolism , bcl-2-Associated X Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...