Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 648: 149-160, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37301140

ABSTRACT

Due to their low cost and high stability, sodium-ion batteries have been increasingly studied. However, their further development is limited by the relative energy density, resulting in the search for high-capacity anodes. FeSe2 displays high conductivity and capacity but still suffers from sluggish kinetics and serious volume expansion. Herein, through sacrificial template methods, a series of sphere-like FeSe2-carbon composites are successfully prepared, displaying uniform carbon coatings and interfacial chemical FeOC bonds. Moreover, benefiting from the unique traits of precursor and acid treatment, rich structural voids are prepared, effectively alleviating volume expansion. Utilized as anodes of sodium-ion batteries, the optimized sample displays considerable capacity, achieving 462.9 mAh g-1, with 88.75% coulombic efficiency at 1.0 A g-1. Even at 5.0 A g-1, their capacity can be kept at approximately 318.8 mAh g-1, while the stable cycling can be prolonged to 200 cycles above. Supported by the detailed kinetic analysis, it can be noted that the existing chemical bonds facilitate the fast shuttling of ions at the interface, and the enhanced surface/near-surface properties are further vitrified. Given this, the work is expected to offer valuable insights for the rational design of metal-based samples toward advanced sodium-storage materials.

2.
J Colloid Interface Sci ; 641: 831-841, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36966572

ABSTRACT

Mo-based heterostructures offer a new strategy to improve the electronics/ion transport and diffusion kinetics of the anode materials for sodium-ion batteries (SIBs). MoO2/MoS2 hollow nanospheres have been successfully designed via in-situ ion exchange technology with the spherical coordination compound Mo-glycerates (MoG). The structural evolution processes of pure MoO2, MoO2/MoS2, and pure MoS2 materials have been investigated, illustrating that the structureofthenanospherecan be maintained by introducing the S-Mo-S bond. Based on the high conductivity of MoO2, the layered structure of MoS2 and the synergistic effect between components, as-obtained MoO2/MoS2 hollow nanospheres display enhanced electrochemical kinetic behaviors for SIBs. The MoO2/MoS2 hollow nanospheres achieve a rate performance with 72% capacity retention at a current of 3200 mA g-1 compared to 100 mA g-1. The capacity can be restored to the initial capacity after a current returns to 100 mA g-1, while the capacity fading of pure MoS2 is up to 24%. Moreover, the MoO2/MoS2 hollow nanospheres also exhibit cycling stability, maintaining a stable capacity of 455.4 mAh g-1 after 100 cycles at a current of 100 mA g-1. In this work, the design strategy for the hollow composite structure provides insight into the preparation of energy storage materials.

3.
Front Chem ; 8: 428, 2020.
Article in English | MEDLINE | ID: mdl-32582631

ABSTRACT

Doping heteroatom, an effective way to enhance the electrochemical performances of graphene, has received wide attention, especially related to nitrogen. Alternating voltage electrochemical exfoliation, as a low cost and green electrochemical approach, has been developed to construct in-situ N-doped graphene (N-Gh) material. The N-Gh presents a much higher capacity than that of pure graphene prepared via the same method, which might be attributed to the introduction of nitrogen, which has much more effects and a disordered structure. As-prepared N-Gh exhibits a low O/C ratio that is helpful in maintaining high electrical conductivity. And the effects and disorder structure are also conductive to reduce the overlaps of graphene layers. A symmetric supercapacitor assembled with N-Gh electrodes displays a satisfactory rate behavior and long cycling stability (92.3% retention after 5,000 cycles).

4.
Data Brief ; 20: 790-793, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30211276

ABSTRACT

The data presented in this data article are related to the research article entitled "Facile Synthetic Strategy to Uniform Cu9S5 Embedded into Carbon: A Novel Anode for Sodium-Ion Batteries" (Jing et al., 2018) [1]. The related experiment details of pure Cu9S5 has been stated. The structure data of pure Cu9S5 and the electrochemical performance for sodium-ion batteries are described.

5.
ACS Appl Mater Interfaces ; 10(32): 27047-27055, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30049207

ABSTRACT

Biomass with abundant resources and low price is regarded as potential sources of functionalized carbon-based energy storage and conversion electrode materials. Rational construction and development of biomass-derived carbon equipped with proper morphology, structure, and composition prove the key to highly efficient utilization of advanced energy storage systems. Herein, we use palm tree bark hair as a biomass source and prepare edge/defect-rich quasi-mesoporous carbon (QMC) by a direct pyrolysis followed by NaOH etching strategy. Then, the edge-rich quasi-mesoporous nitrogen-doped carbon (QMNC) is successfully fabricated through the hydrothermal method by making use of edge/defect-rich QMC and urea as carbon precursor and nitrogen source, respectively. The microstructure and composition of the resultant carbon materials are all detected by a series of techniques. In the meantime, the influence of the etching process on the preparation and electrochemical performance of edge-rich QMNC is systematically explored. The relevant results manifest that the as-prepared edge/defect-rich QMC not only possesses edge-rich plane, much increased specific surface area (SSA), and special quasi-mesopores but also reverses good conductivity and gains sufficient defects for subsequent N doping. After introducing N atoms, the obtained edge-rich QMNC exhibits outstanding capacitive property and oxygen reduction reaction performance, which are mainly attributed to the co-effect of edge-rich plane, large SSA, suitable pore structures, and effective N doping (including high doping amount and optimized N configurations). Clearly, our work not only offers an excellent biomass-derived carbon-based electrode material but also opens a fresh avenue for the development of advanced biomass-derived carbon-based electrode materials.


Subject(s)
Plant Bark , Biomass , Carbon , Electrochemical Techniques , Nitrogen , Phoeniceae , Porosity
6.
ACS Appl Mater Interfaces ; 10(1): 704-712, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29243910

ABSTRACT

ZnS coated on N,S co-doped carbon (ZnS/NSC) composite has been prepared utilizing zinc pyrithione (C10H8N2O2S2Zn) as raw material via calcination. Through activation using Na2CO3 salt, ZnS nanoparticles encapsulated in NSC (denoted as A-ZnS/NSC) with mixed-crystal structure has also been obtained, which reveals much larger specific surface area and more bridges between ZnS and NSC. Based on the existence of bridges (C-S-Zn and S-O-Zn bonds) and the modification of carbon from N,S co-doping, the A-ZnS/NSC composite as an anode for sodium-ion batteries (SIBs) displays significantly enhanced electrochemical performances with a high reversible specific capacity of 516.6 mA h g-1 (at 100 mA g-1), outstanding cycling stability (96.9% capacity retention after 100 cycles at 100 mA g-1), and high rate behavior (364.9 mA h g-1 even at 800 mA g-1).

7.
ACS Appl Mater Interfaces ; 9(31): 26118-26125, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28723066

ABSTRACT

Antimony represents a class of unique functional materials in sodium-ion batteries with high theoretical capacity (660 mA h g-1). The utilization of carbonaceous materials as a buffer layer has been considered an effective approach to alleviate rapid capacity fading. Herein, the antimony/nitrogen-doping porous carbon (Sb/NPC) composite with polyaniline nanosheets as a carbon source has been successfully achieved. In addition, our strategy involves three processes, a tunable organic polyreaction, a thermal annealing process, and a cost-effective reduction reaction. The as-prepared Sb/NPC electrode demonstrates a great reversible capacity of 529.6 mA h g-1 and an outstanding cycling stability with 97.2% capacity retention after 100 cycles at 100 mA g-1. Even at 1600 mA g-1, a superior rate capacity of 357 mA h g-1 can be retained. Those remarkable electrochemical performances can be ascribed to the introduction of a hierarchical porous NPC material to which tiny Sb nanoparticles of about 30 nm were well-wrapped to buffer volume expansion and improve conductivity.

8.
ACS Appl Mater Interfaces ; 9(11): 9662-9668, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28256819

ABSTRACT

Co3O4 has been widely studied as a promising candidate as an anode material for lithium ion batteries. However, the huge volume change and structural strain associated with the Li+ insertion and extraction process leads to the pulverization and deterioration of the electrode, resulting in a poor performance in lithium ion batteries. In this paper, Co3O4 rose-spheres obtained via hydrothermal technique are successfully embedded in graphene through an electrostatic self-assembly process. Graphene-embedded Co3O4 rose-spheres (G-Co3O4) show a high reversible capacity, a good cyclic performance, and an excellent rate capability, e.g., a stable capacity of 1110.8 mAh g-1 at 90 mA g-1 (0.1 C), and a reversible capacity of 462.3 mAh g-1 at 1800 mA g-1 (2 C), benefitted from the novel architecture of graphene-embedded Co3O4 rose-spheres. This work has demonstrated a feasible strategy to improve the performance of Co3O4 for lithium-ion battery application.

9.
Adv Mater ; 27(47): 7861-6, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26506218

ABSTRACT

A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Nanotechnology , Quantum Dots/chemistry , Sodium/chemistry , Electrodes , Porosity , Time Factors
10.
ACS Appl Mater Interfaces ; 7(41): 22741-4, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26435064

ABSTRACT

An electrochemical alternating voltage approach of producing NiCo double hydroxide (NiCoDH) layered ultrathin nanoflakes with large specific surface area (355.8 m(2) g(-1)), remarkable specific capacitance and rate capability is presented. The obtained NiCoDH as anode for asymmetric supercapacitors shows excellent energy density of 17.5 Wh kg(-1) at high power density of 10.5 kW kg(-1) and cycling stability (91.2% after 10,000 cycles).

11.
ACS Appl Mater Interfaces ; 7(34): 19362-9, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26284385

ABSTRACT

Due to the high theoretical capacity of 946 mAh g(-1), Sb2S3 can be employed as promising electrode material for sodium-ion batteries (SIBs). Herein, the sodium storage behaviors of one-dimensional (1D) Sb2S3-based materials (Sb2S3 and Sb2S3@C rods) are successfully studied for the first time, displaying good cyclability and rate capability owing to their unique morphology and structure. Specifically, the Sb2S3@C rods electrode presents greatly enhanced electrochemical properties, resulting from the introduction of thin carbon layers which can effectively alleviate the strain caused by the large volume change and simultaneously improve the conductivity of electrode during cycling. At a current density of 100 mA g(-1), it delivers a high capacity of 699.1 mAh g(-1) after 100 cycles, which corresponds to 95.7% of the initial reversible capacity. Even at a high current density of 3200 mA g(-1), the capacity can still reach 429 mAh g(-1). This achievement may be a significant exploration for develpoing novel 1D Sb-based materials or metal sulfide SIBs anodes.

12.
Phys Chem Chem Phys ; 17(24): 15764-70, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26016643

ABSTRACT

Rutile TiO2 microspheres anchored by nanoneedle clusters, as a new class of anode materials, are successfully employed for sodium-ion batteries and manifested good energy storage behavior. The initial discharge capacity of 308.8 mA h g(-1) is obtained and a high reversible capacity of 121.8 mA h g(-1) is maintained after 200 cycles at a current density of 0.1 C, exhibiting a high capacity retention of 83.1%. All these merits are not only ascribed to the rutile TiO2 crystal structure, but also thanks to the porous morphology of hundreds of nanoneedle clusters in favor of sodium diffusion and accommodating the strain during the sodiation and desodiation processes. Therefore, it is highly expected that rutile TiO2, as a feasible electrochemical sodium storage material, can be a new promising candidate as an anode for sodium-ion batteries.

13.
Phys Chem Chem Phys ; 17(1): 159-65, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25372713

ABSTRACT

The ion-migration mechanism of Na3V2(PO4)2F3 is investigated in Na3V2(PO4)2F3-Li hybrid-ion batteries for the first time through a combined computational and experimental study. There are two Na sites namely Na(1) and Na(2) in Na3V2(PO4)2F3, and the Na ions at Na(2) sites with 0.5 occupation likely extract earlier to form Na2V2(PO4)2F3. The structural reorganisation is suggested to make a stable configuration of the remaining ions at the centre of Na(1) sites. After the extraction of the second Na ion, the last ion prefers to change occupation from 1 to 0.5 to occupy two Na(2) sites. The insertion of predominant Li ions also should undergo structural reorganization when the first Li ion inserts into the centre of Na(1) site theoretically forming NaLiV2(PO4)2F3, and the second ion inserts into two Na(2) sites to form NaLi2V2(PO4)2F3. More than a 0.3 Li ion insertion would take place in the applied voltage range by increasing the number of sites occupied rather than occupy the vacancy in triangular prismatic sites. An improved solution-based carbothermal reduction methodology makes Na3V2(PO4)2F3 exhibit excellent C-rate and cycling performances, of which the Li-inserted voltage is evaluated by first principles calculations.

14.
ACS Appl Mater Interfaces ; 6(18): 16189-96, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25140456

ABSTRACT

Sodium-ion batteries (SIBs) have come up as an alternative to lithium-ion batteries (LIBs) for large-scale applications because of abundant Na storage in the earth's crust. Antimony (Sb) hollow nanospheres (HNSs) obtained by galvanic replacement were first applied as anode materials for sodium-ion batteries and exhibited superior electrochemical performances with high reversible capacity of 622.2 mAh g(-1) at a current density of 50 mA g(-1) after 50 cycles, close to the theoretical capacity (660 mAh g(-1)); even at high current density of 1600 mA g(-1), the reversible capacities can also reach 315 mAh g(-1). The benefits of this unique structure can also be extended to LIBs, resulting in reversible capacity of 627.3 mAh g(-1) at a current density of 100 mAh g(-1) after 50 cycles, and at high current density of 1600 mA g(-1), the reversible capacity is 435.6 mAhg(-1). Thus, these benefits from the Sb HNSs are able to provide a robust architecture for SIBs and LIBs anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...