Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38422614

ABSTRACT

OBJECTIVE: To investigate inflammatory responses to lipopolysaccharide (LPS) injection in layers. ANIMALS: 33 40-week-old laying hens were used. METHODS: 30 laying hens were divided into 2 groups: the first group was injected with 8 mg/kg LPS, while the second group was injected with sterile saline. At the start of the study, 3 birds served as a baseline and were used as the time 0 controls for both the saline and LPS-treated groups. Blood and spleen tissues were collected at 0 (before) and 1, 2, 3, 4, and 6 hours after injection. RESULTS: LPS administration increased splenic mRNA levels of IL-1ß, IL-2, IL-6, IL-8, IL-10, interferon-γ, and tumor necrosis factor-α (P < .001) and serum IL-6 levels (P < .01) compared to saline injection. The mRNA expression of most cytokine genes increased rapidly toward peak values within 2 hours after the LPS injection, and then the difference between the saline and LPS treatments got smaller as time went on; serum IL-6 reached its highest concentration 2 hours after LPS administration. The magnitude of LPS-induced upregulation of gene expression was the highest for IL-6, followed by IL-1ß and IL-8, and tumor necrosis factor-α was the least affected. CLINICAL RELEVANCE: The temporal and quantitative profile of these inflammatory mediators generated from this study provides valuable information in identifying the optimal time window and appropriate biomarkers for LPS-induced inflammation, which has significant implications in evaluating the effects of interventions on the immune system of chickens.


Subject(s)
Chickens , Cytokines , Lipopolysaccharides , Spleen , Animals , Lipopolysaccharides/pharmacology , Spleen/drug effects , Spleen/metabolism , Cytokines/genetics , Cytokines/metabolism , Chickens/immunology , Chickens/metabolism , Female , Gene Expression Regulation/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , Poultry Diseases/chemically induced , Poultry Diseases/immunology
2.
J Nutr ; 153(7): 2105-2116, 2023 07.
Article in English | MEDLINE | ID: mdl-37187351

ABSTRACT

BACKGROUND: There is a lack of nutrition guidelines for the feeding of omega-3 polyunsaturated fatty acids (PUFA) to laying hens. Knowledge as to whether the type and concentrations of α-linolenic acid (ALA) and/or docosahexaenoic acid (DHA) in the diet can make a difference to the birds' immune responses when subjected to a lipopolysaccharide (LPS) challenge is limited. OBJECTIVES: The study was designed to determine the potential nutritional and health benefits to laying hens when receiving dietary omega-3 PUFA from either ALA or DHA. METHODS: A total of 80 Lohmann LSL-Classic (white egg layer, 20 wk old) were randomly assigned to 1 of 8 treatment diets (10 hens/treatment), provided 0.2%, 0.4%, 0.6%, or 0.8% of total dietary omega-3 PUFA, provided as either ALA-rich flaxseed oil or DHA-enriched algal biomass. After an 8-wk feeding period, the birds were challenged with Escherichia coli-derived LPS (8 mg/kg; i.v. injection), with terminal sample collection 4 h after challenge. Egg yolk, plasma, liver, and spleen samples were collected for subsequent analyses. RESULTS: Increasing dietary omega-3 supplementation yielded predictable responses in egg yolk, plasma, and liver fatty acid concentrations. Dietary intake of ALA contributed mainly to ALA-derived oxylipins. Meanwhile, eicosapentaenoic acid- and DHA-derived oxylipins were primarily influenced by DHA dietary intake. LPS increased the concentrations of almost all the omega-6 PUFA-, ALA-, and DHA-derived oxylipins in plasma and decreased hepatic mRNA expression of COX-2 and 5-LOX (P < 0.001) involved in the biosynthesis of oxylipins. LPS also increased mRNA expression of proinflammatory cytokine IFN-γ and receptor TLR-4 (P < 0.001) in the spleen. CONCLUSIONS: These results revealed that dietary intake of ALA and DHA had unique impacts on fatty acid deposition and their derived oxylipins and inflammatory responses under the administration of LPS in laying hens.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Animals , Female , Linseed Oil , Oxylipins , Fatty Acids/metabolism , Chickens , Lipopolysaccharides , Dietary Supplements/analysis , Diet/veterinary , Animal Feed/analysis
3.
J Trace Elem Med Biol ; 30: 77-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25467853

ABSTRACT

Methionine synthase (MS) and betaine-homocysteine methyltransferase (BHMT) are both zinc (Zn)-dependent methyltransferases and involved in the methylation of homocysteine. The objective of this study was to investigate the effects of dietary Zn supply on homocysteine levels and expression of the two enzymes in growing rats. Male weanling Sprague-Dawley rats were assigned randomly to four dietary groups (n=8/group) for 3 weeks: Zn deficient (ZD; <1mg Zn/kg); Zn control (ZC; 30mg Zn/kg); Zn supplemented (ZS; 300mg Zn/kg); pair fed (PF; 30mg Zn/kg) to the ZD group. Serum and femur Zn concentrations were 83% and 58% lower in ZD, and 49% and 62% higher in ZS compared to ZC (P<0.001), respectively. The ZD rats had lower feed intake (37%), body weight gains (45%), liver (43%) and kidney (31%) weights than those of ZC (P<0.001), but these parameters in ZD were not significantly different from the PF controls. Serum homocysteine concentrations were 65% higher in ZD compared to PF (P<0.05), and there was no significant difference in serum folate levels between ZD and PF groups. The mRNA expression of liver and kidney MS was 57% and 38% lower in ZD than PF (P<0.001), respectively. Hepatic and renal BHMT mRNA levels were not altered in ZD compared to controls. The aforementioned measurements were not significantly different between ZS and ZC groups, except Zn levels. These results demonstrated that homocysteine homeostasis appeared to be disturbed by Zn deficiency but not Zn supplementation, and elevated serum homocysteine might be due to reduced expression of MS during Zn deficiency.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Betaine-Homocysteine S-Methyltransferase/metabolism , Dietary Supplements , Homocysteine/blood , Zinc/deficiency , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Body Weight , Diet , Feeding Behavior , Folic Acid , Gene Expression Regulation, Enzymologic , Kidney/enzymology , Liver/enzymology , Male , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Zinc/blood
4.
Biol Trace Elem Res ; 143(1): 394-402, 2011 Oct.
Article in English | MEDLINE | ID: mdl-20953845

ABSTRACT

One hundred male rats were randomly divided into four groups (n = 25) and fed a Zn-adequate diet (ZA, 46.39 mg/kg), Zn-deficient diet (ZD, 3.20 mg/kg), Zn-overdose diet (ZO, 234.39 mg/kg), or were pair-fed a Zn-adequate diet (PF) for 5 weeks, respectively. The body weight, femur weight, and activity of alkaline phosphatase (ALP) were reduced in the ZD group but were increased in the ZO group. Zn concentrations in both liver and femur were elevated in the ZO group, whereas femur Zn was decreased in the ZD group. The concentrations of calcium and phosphorus were lower in the ZD than those in other groups. Serum calcium concentration was decreased in the ZD. The relative expression level of ALP was decreased in both ZD and PF, and no significant differences were observed between ZO and ZA. Insulin-like growth factor-I (IGF-I) mRNA level was reduced in the ZD but unchanged in the ZO and PF group. Zn deficiency also decreased ALP mRNA level as compared with that of PF group. Carbonic anhydrase II mRNA level was not affected by Zn. Nevertheless, dietary Zn influenced the growth, bone metabolism, and expression of IGF-I and ALP in male growing rats.


Subject(s)
Bone and Bones/drug effects , Bone and Bones/metabolism , Zinc/metabolism , Zinc/pharmacology , Animals , Calcium/blood , Calcium/metabolism , Dietary Supplements , Femur/drug effects , Femur/metabolism , Gene Expression/drug effects , Liver/drug effects , Liver/metabolism , Male , Phosphorus/blood , Phosphorus/metabolism , Rats , Rats, Sprague-Dawley , Zinc/blood
5.
Biol Trace Elem Res ; 124(2): 144-56, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18425433

ABSTRACT

Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 microg zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was probably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.


Subject(s)
Dietary Supplements , Eating/drug effects , Zinc/deficiency , Zinc/pharmacology , Animals , Calcitonin Gene-Related Peptide/blood , Deficiency Diseases/blood , Deficiency Diseases/diet therapy , Glucagon/blood , Insulin/blood , Leptin/blood , Male , Neuropeptide Y/blood , Rats , Rats, Sprague-Dawley , Thyroxine/blood , Triiodothyronine/blood
6.
Ann Nutr Metab ; 51(4): 345-51, 2007.
Article in English | MEDLINE | ID: mdl-17726312

ABSTRACT

BACKGROUND: This study evaluated effects of zinc on the hepatic lipid peroxidation, antioxidant components and mRNA expression levels in rats. METHODS: Three diets with different Zn levels including Zn adequacy (ZA; 34.50 mg/kg, control), Zn deficiency (ZD; 3.30 mg/kg), and Zn overdose (ZO; 345.45 mg/kg) were fed to rats for 6 weeks. The mRNA expression levels were analyzed by cDNA microarrays. RESULTS: The body weight of rats fed the ZD diet was less (p < 0.01) than that of rats fed the ZA diet. Zn overdose elevated body weight, but the increase was not detected (p > 0.05) at week 6. Although copper and iron status in serum were declined (p < 0.01), those in liver were not affected (p > 0.05) by the high intake of zinc. The glutathione peroxidase (GPx) and glutathione (GSH) remained unchanged (p > 0.05) by zinc treatment. Rats fed the ZD diet showed reductions(p < 0.01) in the Cu-Zn superoxide dismutase (Cu-Zn SOD) and catalase (CAT) activity, and increases (p < 0.01) in the malondialdehyde and hydrogen peroxide (H(2)O(2)) contents. Rats fed the ZO diet particularly had higher Cu-Zn SOD (p < 0.01) activity. The mRNA expression levels of SOD were upregulated in the ZO group, and CAT was downregulated in the ZD group, while no changes in GPx mRNA levels were found after zinc treatment. CONCLUSION: The study suggested that zinc deficiency largely decreased body weight; zinc overdose, however, moderately stimulated growth in the early growing phase of rats. High dietary zinc did not compete with liver copper and iron status. Although Zn deficiency impaired antioxidant functions, zinc overdose hardly enhanced the antioxidant systems of animals.


Subject(s)
Gene Expression Regulation , Liver/metabolism , RNA, Messenger/metabolism , Zinc/deficiency , Zinc/pharmacology , Animals , Antioxidants/metabolism , Body Weight/drug effects , Copper/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Iron/metabolism , Lipid Peroxidation/drug effects , Liver/enzymology , Male , Malondialdehyde/metabolism , Oligonucleotide Array Sequence Analysis/methods , Oxidation-Reduction , Random Allocation , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism
7.
Biol Trace Elem Res ; 115(2): 187-94, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17435261

ABSTRACT

Zinc (Zn) is an essential trace element required for human beings and animals. This divalent cation is involved in many physiological functions, including immune and antioxidant function, growth, and reproduction. Deficiency of Zn produces several pathological disorders and abnormalities in its metabolism, such as anorexia, weight loss, poor efficiency, and growth retardation. Although it has been known for more than 50 yr that Zn deficiency regularly and consistently causes anorexia in many animal species, the mechanism that causes this phenomenon still remains an enigma. The present review describes recent research investigating the relationship between Zn deficiency and the regulation of food intake, as well as macronutrient selection.


Subject(s)
Eating , Nutritional Physiological Phenomena , Zinc/metabolism , Animals , Humans , Zinc/deficiency
8.
Article in English | MEDLINE | ID: mdl-17462929

ABSTRACT

Distribution and properties of the main digestive enzymes including protease and amylase, from stomach, pancreas and the anterior, middle and posterior intestine of the adult red-eared slider turtle Trachemys scripta elegans were studied at various pHs and temperatures. The optimum temperature and pH for protease in stomach, pancreas and the anterior, middle and posterior intestine were 40 degrees C, 2.5; 50 degrees C, 8.0; 50 degrees C, 7.0; 50 degrees C, 8.0; and 50 degrees C, 8.5; respectively. The optimum temperature and pH for amylase in stomach, pancreas and anterior, middle and posterior intestine were 40 degrees C, 8.0; 30 degrees C, 7.5; 40 degrees C, 7.0; 50 degrees C, 8.0; and 50 degrees C, 8.0; respectively. Under the optimum conditions, the order of protease activity from high to low was of pancreas, stomach and the anterior, posterior and middle intestine; the activity of amylase in descending order was of anterior intestine, pancreas, posterior intestine, middle intestine and stomach.


Subject(s)
Amylases/metabolism , Digestive System/enzymology , Peptide Hydrolases/metabolism , Turtles/metabolism , Animals , Diet , Hydrogen-Ion Concentration , Tissue Distribution
9.
Nutrition ; 22(2): 187-96, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16413754

ABSTRACT

OBJECTIVE: The present study simultaneously investigated the effects of different zinc (Zn) levels on the growth performance and relative biochemical parameters in growing rats and analyzed the molecular mechanism of zinc influencing food intake. METHODS: Three diets with different Zn levels--Zn adequate (ZA; 35.94 mg/kg, control), Zn deficient (ZD; 3.15 mg/kg), and Zn overdose (ZO; 347.50 mg/kg)--were fed to rats for 6 wk. Dietary Zn was supplemented with ZnSO4. The relation between zinc and food intake was studied by pituitary cDNA microarrays. RESULTS: Compared with ZA group, rats fed the ZD diet showed decreases in body weight (P < 0.01), food intake (P < 0.05), tissue zinc concentrations (P < 0.01), and specific activities of alkaline phosphatase (P < 0.01) and copper/Zn superoxide dismutase (P < 0.05), whereas the ZO diet had positive effects on body weight (P < 0.05), zinc concentrations (P < 0.01), and alkaline phosphatase activity (P < 0.05). The villi of the jejunum became shorter (P < 0.01), shriveled, and flattened. This change in morphology decreased absorption surface area, and there was a substantial decrease (P < 0.01) in villi number per unit area in ZD rats. Metallothionein concentration was increased in livers of rats fed ZD (P < 0.01) and ZO (P < 0.05) diets. Moreover, ZD and ZO influenced normal growth and development of organs. The results from pituitary cDNA arrays indicated that different Zn levels affect gene expression of appetite-related peptides, including neuropeptide-Y, melanin-concentrating hormone, ghrelin, calcitonin gene-related product, and serotonin. CONCLUSION: The present results showed that zinc deficiency has a negative effect on the growth performance and biochemical parameters of rats. The ZO diet increased body weight (P < 0.05) but had no effect (P > 0.05) on food intake, copper/Zn superoxide dismutase activity, and intestinal morphology. The ZD diet decreased rat food intake by regulating appetite-related gene expression in the pituitary gland.


Subject(s)
Body Weight/drug effects , Eating/drug effects , Gene Expression Regulation/drug effects , Pituitary Gland/metabolism , Rats/growth & development , Zinc/pharmacology , Alkaline Phosphatase/metabolism , Animals , Dose-Response Relationship, Drug , Intestinal Absorption/drug effects , Male , Oligonucleotide Array Sequence Analysis , Organ Size/drug effects , Pituitary Gland/drug effects , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Zinc/deficiency , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...