Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(17): e2305363, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105346

ABSTRACT

To fabricate label-free and rapid-resulting semiconducting biosensor devices incorporating graphene, it is pertinent to directly grow uniform graphene films on technologically important dielectric and semiconducting substrates. However, it has long been intuitively believed that the nonideal disordered structures formed during direct growth, and the resulted inferior electrical properties will inevitably lead to deteriorated sensing performance. Here, graphene biosensor chips are constructed based on direct plasma-enhanced chemical vapor deposition (PECVD) grown graphene on a 4-inch silicon wafer with excellent film uniformity and high yield. To surprise, optimal operations of graphene biosensors permit ultrasensitive detection of SARS-CoV-2 virus nucleocapsid protein with dilutions down to sub-femtomolar concentrations. Such impressive limit of detection (LOD) is comparable to or even outperforms that of the state-of-the-art biosensor devices based on high-quality graphene. Further noise spectral characterizations and analysis confirms that the LOD is limited by molecular diffusion and/or known interference signals such as drift and instability of the sensors, rather than the electrical merits of the graphene devices along. Hence, result sheds light on processing directly grown PECVD graphene into high-performance sensor devices with important economic benefits and social significance.

2.
Adv Mater ; 34(7): e2106666, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34994022

ABSTRACT

Owing to their excellent electrical properties and chemical stability, graphene field-effect transistors (Gr-FET) are extensively studied for biosensing applications. However, hinging on surface interactions of charged biomolecules, the sensitivity of Gr-FET is hampered by ionic screening under physiological conditions with high salt concentrations up to frequencies as high as MHz. Here, an electrolyte-gated Gr-FET in reflectometry mode at ultrahigh frequencies (UHF, around 2 GHz), where the ionic screening is fully cancelled and the dielectric sensitivity of the device allows the Gr-FET to directly function in high-salt solutions, is configured. Strikingly, by simultaneous characterization using electrolyte gating and UHF reflectometry, the developed graphene biosensors offer unprecedented capability for real-time monitoring of dielectric-specified biomolecular/cell interactions/activities, with superior limit of detection compared to that of previously reported nanoscale high-frequency sensors. These achievements highlight the unique potential of ultrahigh-frequency operation for unblocking the true potential of graphene biosensors for point-of-care diagnostic.


Subject(s)
Biosensing Techniques , Graphite , Electrolytes , Graphite/chemistry , Ions , Transistors, Electronic
3.
Small ; 16(15): e1902820, 2020 04.
Article in English | MEDLINE | ID: mdl-31592577

ABSTRACT

This review provides a critical overview of current developments on nanoelectronic biochemical sensors based on graphene. Composed of a single layer of conjugated carbon atoms, graphene has outstanding high carrier mobility and low intrinsic electrical noise, but a chemically inert surface. Surface functionalization is therefore crucial to unravel graphene sensitivity and selectivity for the detection of targeted analytes. To achieve optimal performance of graphene transistors for biochemical sensing, the tuning of the graphene surface properties via surface functionalization and passivation is highlighted, as well as the tuning of its electrical operation by utilizing multifrequency ambipolar configuration and a high frequency measurement scheme to overcome the Debye screening to achieve low noise and highly sensitive detection. Potential applications and prospectives of ultrasensitive graphene electronic biochemical sensors ranging from environmental monitoring and food safety, healthcare and medical diagnosis, to life science research, are presented as well.


Subject(s)
Biosensing Techniques , Electronics , Graphite , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...