Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Phys Chem Chem Phys ; 26(21): 15751-15757, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38768324

ABSTRACT

Rare-earth phosphates were thought to be good candidates as ultraviolet/deep ultraviolet optical materials due to their relatively large bandgap and optical properties. In this paper, the authors screened out a family of XPO4 (X = Sc, Y, La, and Lu) compounds with an enhanced bandgap (HSE06 bandgap ≥ 7.61 eV) and birefringence (0.0934-0.2003@1064 nm) using first-principles calculations. The origin of enhanced optical properties was investigated using projected density of states, distortion indices, and Born effective charges. The results show that the PO4 anionic groups and X-O polyhedra give the main contribution in determining the optical properties, and the PO4 anionic groups give more contribution than other functional basic units. The spin-orbit interaction was also investigated. Similar band structures were found after spin-orbit coupling (SOC) was considered, and slightly enhanced birefringence was found when SOC was applied to these rare-earth phosphates.

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607151

ABSTRACT

Introducing post-transition metal cations is an excellent strategy for enhancing optical properties. This paper focuses on four isomers, namely the X2PO4I (X = Pb, Sn, Ba, and Sr) series. For the first time, the paper's attention is paid to the changes in electronic structure, as well as refractive indices and birefringence, with and without the inclusion of spin-orbit effects in this series. The first-principles results show that spin-orbit effects of the 5p and 6p states found in these compounds lead to splitting of the bands, narrowing of the band gap, enhancement of the lone-pair stereochemistry, and enhancement of the refractive indices and birefringence. Moreover, a comparison of the lone-pair electron phosphates, X2PO4I (X = Pb and Sn), and the isomeric alkaline earth metal phosphates, X2PO4I (X = Ba and Sr), reveals that changes in the band structure have a greater effect on the enhancement of the birefringence than the slight enhancement of the lone-pair stereochemical activity. This study has important implications for a deeper understanding of the optical properties of crystals and the design of novel optical materials.

3.
Small ; 20(27): e2308416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38361226

ABSTRACT

Developing efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional electrocatalysts is attractive for rechargeable metal-air batteries. Meanwhile, single metal atoms embedded in 2D layered transition metal chalcogenides (TMDs) have become a very promising catalyst. Recently, many attentions have been paid to the 2D ReS2 electrocatalyst due to its unique distorted octahedral 1T' crystal structure and thickness-independent electronic properties. Here, the catalytic activity of different transition metal (TM) atoms embedded in ReS2 using the density functional theory is investigated. The results indicate that TM@ReS2 exhibits outstanding thermal stability, good electrical conductivity, and electron transfer for electrochemical reactions. And the Ir@ReS2 and Pd@ReS2 can be used as OER/ORR bifunctional electrocatalysts with a lower overpotential for OER (ηOER) of 0.44 V and overpotentials for ORR (ηORR) of 0.26 V and 0.27 V, respectively. The excellent catalytic activity is attributed to the optimal adsorption strength for oxygen intermediates coming from the effective modulation of the electronic structure of ReS2 after Ir/Pd doping. The results can help to deeply understand the catalytic activity of TM@ReS2 and develop novel and highly efficient OER/ORR electrocatalysts.

4.
Dalton Trans ; 53(7): 3377-3385, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38264854

ABSTRACT

Phosphates, whose obvious disadvantage is the relatively small birefringence, can be overcome by the introduction of post-transition metal cations containing stereochemically active lone-pair electrons. In this paper, two new compounds were successfully explored in the A-Sb-P-O system, i.e. Cs2Sb3O(PO4)3 (CsSbPO) and (NH4)2Sb4O2(H2O)(PO4)2[PO3(OH)]2 (NH4SbPOH). Transmission spectra show that CsSbPO has a surprising transmission range with a UV cutoff edge of 213 nm. First-principles calculations show that both compounds have a wide band gap (5.02 eV for CsSbPO and 5.30 eV for NH4SbPOH) and enlarged birefringence (Δn = 0.034@1064 nm for CsSbPO and Δn = 0.045@1064 nm for NH4SbPOH). The results of real-space atom-cutting investigations show that the distorted [SbOx] polyhedra originating from the asymmetric lone pair electrons give the main contribution to the total birefringence and overcome the disadvantage of small birefringence of phosphates but maintain wide transition windows.

5.
Angew Chem Int Ed Engl ; 63(5): e202315434, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37973618

ABSTRACT

Enhancing anisotropy through the controlled arrangement of anionic groups is essential for improving the nonlinear optical (NLO) performance of non-π-conjugated NLO materials. In this study, we present the successful synthesis of the first examples of mixed alkali metal-alkaline earth metal sulfamate materials, including noncentrosymmetric Cs2 Mg(NH2 SO3 )4 ⋅ 4H2 O (1), as well as centrosymmetric K2 Ca(NH2 SO3 )4 (2) and Rb2 Ca(NH2 SO3 )4 (3). All three compounds feature promising deep ultraviolet cut-off edges, notably 1 with a cut-off edge below 180 nm. The synergy of Cs+ and Mg2+ cations in 1 facilitated the successful alignment of polar [NH2 SO3 ] tetrahedra in a uniform orientation. Remarkably, 1 stands as the sole instance among reported sulfamate compounds with a co-parallel anionic arrangement, yielding a very large dipole moment compared to other non-π-conjugated NLO materials. Moreover, the substantial dipole moment of 1 yields an enhanced second harmonic generation response, approximately 2.3 times that of KH2 PO4 , and a large birefringence of 0.054 at 546.1 nm. The approach of regulating the arrangement of anionic groups using aliovalent cations holds promise for advancing the exploration of non-π-conjugated NLO materials.

6.
Article in English | MEDLINE | ID: mdl-38038267

ABSTRACT

In this study, we demonstrate the fabrication of a novel 2D transition metal dichalcogenide, VTe2, into a saturable absorber (SA) by using the liquid phase exfoliation method. Furthermore, the first-principles calculations were conducted to elucidate the electronic band structures and absorption spectrum. The nonlinear optical absorption properties of VTe2 at 1.0, 2.0, and 3.0 µm were measured using open-aperture Z-scan and P-scan methods, which showed saturation intensities and modulation depths of 95.57 GW/cm2 and 9.24%, 3.11 GW/cm2 and 7.26%, and 15.8 MW/cm2 and 17.1%, respectively. Furthermore, in the realm of practical implementation, the achievement of stable passively Q-switched (PQS) lasers employing SA composed of few-layered VTe2 nanosheets has manifested itself with broadband operating wavelengths from 1.0 to ∼3.0 µm. Specifically, PQS laser operations from near-infrared to mid-infrared with pulse durations of 195 and 563 ns for 1.0 and 2.0 µm solid-state lasers, respectively, and 749 ns for an Er3+-doped fluoride fiber laser at 3.0 µm were obtained. Our experimental results demonstrate that VTe2 is a potential broadband SA device for achieving PQS lasers. To the best of our knowledge, this is the first demonstration of using VTe2 as an SA in PQS lasers in the near- and mid-infrared regions, which highlights the potential of VTe2 for future research and applications in optoelectronic devices.

7.
Dalton Trans ; 52(45): 16920-16926, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37927065

ABSTRACT

Two new selenites, K2Zn3Se4O12 (compound 1) and K4Zn3V4Se2O19 (compound 2), have been successfully synthesized by solid-state reactions in vacuum tubes. Compound 1 consists of a three-dimensional (3D) framework with [SeO3] triangular pyramids and [ZnO4] tetrahedra in the monoclinic space group P21/c (No. 14). Compound 1's cut-off edge is below 344 nm, based on its UV-Vis-NIR diffuse reflectance studies, and theoretical calculations indicate a birefringence of around 0.043 at 1064 nm. The two-dimensional layer of compound 2, in contrast, is made up of [SeO3] triangular pyramids, [ZnO4] tetrahedra, and [V4O13] tetrahedra. It crystallizes in the monoclinic space group C2/c (No. 15). Its UV-Vis-NIR diffuse reflectance studies demonstrate that the compound's cut-off edge is lower than 330 nm.

8.
Appl Radiat Isot ; 201: 110990, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696202

ABSTRACT

LiMgPO4:Dy phosphors were synthesized by high-temperature solid-state method and sol-gel method. The effects of different synthesis methods on crystal structure, morphology, thermoluminescence (TL) properties, and optically stimulated luminescence (OSL) properties of LiMgPO4:Dy were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), TL glow curve and continuous wave OSL (CW-OSL) curves. XRD patterns showed that the crystal phase of the samples synthesized by the two methods is LiMgPO4. The morphology of the samples synthesized by sol-gel method was better than that synthesized by high-temperature solid-state method. The TL sensitivity of the samples synthesized by sol-gel method was higher than that synthesized by high-temperature solid-state method. The TL strongest glow peak of the LiMgPO4:Dy sample synthesized by high-temperature solid-state method was 363 K, while that the LiMgPO4:Dy sample synthesized by sol-gel method was 380 K. The OSL sensitivity of the samples synthesized by sol-gel method was significantly higher than that synthesized by high-temperature solid-state method. The synthesis method had no effect on the OSL decay of the sample. LiMgPO4:Dy phosphor synthesized by sol-gel method may be a suitable candidate material for radiation dosimetry.

9.
Medicine (Baltimore) ; 102(31): e34448, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37543808

ABSTRACT

RATIONALE: Dyschromatosis universalis hereditaria (DUH) is an uncommon form of pigmented genodermatosis that is typically inherited autosomally and dominantly. In the previous study, the pathogenic genes of DUH have been identified in ATP-binding cassette subfamily B, member 6 and SASH1. However, the mutational screening of the causative gene remains incomplete and still lacks sufficient proof in the etiology. PATIENT CONCERNS: A 2-generation Chinese family clinically diagnosed with DUH were enrolled. They showed pigmented spots from their childhood and came to the hospital for medical advice and genetic analysis. We found a novel mutation c.1757T > C (p.I586T) of SASH1 in 3 affected family members by whole-exome sequencing. DIAGNOSES: Genetic outcomes and clinical examinations confirmed the diagnosis of DUH in 3 family members with lentiginous syndrome. INTERVENTIONS AND OUTCOMES: Using whole-exome sequencing and sanger sequencing technologies, we identified a novel mutation c.1757T > C (p.I586T) of SASH1 that co-segregated in 3 afflicted family members but not in the normal individuals. Significantly, c.1757T > C (p.I586T) is a novel mutation which had not been previously reported. The same codon position in SASH1 (c.1758C > G, p.I586M) has been reported in a Japanese man, and he showed identical phenotype compared to our study participants. LESSONS: Our study broadens the spectrum of DUH mutations and provides more genetic characteristics of DUH in understanding its etiology. Furthermore, we demonstrated the diagnostic accuracy of whole-exome sequencing for inherited skin diseases and provided new information for etiological study.


Subject(s)
Exome , Pigmentation Disorders , Male , Humans , Exome Sequencing , Pigmentation Disorders/diagnosis , Pigmentation Disorders/genetics , Mutation , Pedigree , Tumor Suppressor Proteins/genetics
10.
Nanomaterials (Basel) ; 13(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570473

ABSTRACT

Transition-metal-doped clusters have long been attracting great attention due to their unique geometries and interesting physical and/or chemical properties. In this paper, the geometries of the lowest- and lower-energy CoKn (n = 2-12) clusters have been screened out using particle swarm optimization and first principles relaxation. The results show that except for CoK2 the other CoKn (n = 3-12) clusters are all three-dimensional structures, and CoK7 is the transition structure from which the lowest energy structures are cobalt atom-centered cage-like structures. The stability, the electronic structures, and the magnetic properties of CoKn clusters (n = 2-12) clusters are further investigated using the first principles method. The results show that the medium-sized clusters whose geometries are cage-like structures are more stable than smaller-sized clusters. The electronic configuration of CoKn clusters could be described as 1S1P1D according to the spherical jellium model. The main components of petal-shaped D molecular orbitals are Co-d and K-s states or Co-d and Co-s states, and the main components of sphere-like S molecular orbitals or spindle-like P molecular orbitals are K-s states or Co-s states. Co atoms give the main contribution to the total magnetic moments, and K atoms can either enhance or attenuate the total magnetic moments. CoKn (n = 5-8) clusters have relatively large magnetic moments, which has a relation to the strong Co-K bond and the large amount of charge transfer. CoK4 could be a magnetic superatom with a large magnetic moment of 5 µB.

11.
Phys Chem Chem Phys ; 25(20): 14558-14565, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191133

ABSTRACT

Although research on vacancy engineering of anode materials has sufficiently advanced to obtain heightened battery capacity, the effect on the diffusion barrier underlying the mechanism remains to be elucidated. Herein, we investigated the effect of vacancy engineering on Na adsorption and diffusion on a vanadium diselenide (VSe2) monolayer using first-principles calculations to reveal the underlying physics behind the performance optimization of anode materials in a sodium-ion battery. The results demonstrate that the structure of the substrate is responsible for the difference between the adsorption energy and diffusion barrier that resulted from cation and anion vacancies. As there is an absent Se atom (VSe) on the surface layer of the substrate, diffusion of Na on the surface could become pressurized with a high diffusion barrier up to 0.33 eV and a high adsorption energy (-1.92 eV) to capture additional Na atoms. However, because the V layer is sandwiched between two Se layers, there is less interaction with Na, and the adsorption energy and diffusion barrier are -1.58 and 0.13 eV, respectively, when a V atom is nonexistent (VV). Moreover, the defective VSe2 increased the battery capacity, with little impact on open-circuit voltage. In this work, we analyzed the effect of vacancy engineering on VSe2 monolayer material, which provides theoretical clues for the design of efficient sodium-ion batteries with heightened capacity.

12.
Chemistry ; 29(34): e202300626, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37037794

ABSTRACT

In the work, four new Sb-based phosphates, K4 (SbO2 )5 (PO4 )3 , Rb(SbO2 )2 PO4 , Rb3 (SbO2 )3 (PO4 )2 and Cs3 (SbO2 )3 (PO4 )2 (H2 O)1.32 , were successfully synthesized by a high-temperature melt method. Among them, Rb(SbO2 )2 PO4 and Rb3 (SbO2 )3 (PO4 )2 are the first reported examples of Rb-containing alkali metal Sb-based phosphates. They show three-dimensional (3D) frameworks composed of [Sb8 P4 O30 ]∞ layer for K4 (SbO2 )5 (PO4 )3 and [Sb6 P2 O20 ]∞ layer for Rb(SbO2 )2 PO4 , and 2D lamellar structure composed of [Sb3 P2 O10 ]∞ for Rb3 (SbO2 )3 (PO4 )2 and Cs3 (SbO2 )3 (PO4 )2 (H2 O)1.32 . A detailed structural comparison shows that the structure dimensions for them transfer from 1D to complex 3D framework with the increase of (Sb+P)/O ratio, which affects performances of the compounds. Optical property and energy band structure calculations were also carried out based on the density functional theory (DFT). The present study enriches the diversity of Sb-based phosphates and paves the way for further explore their optical properties in the future.

13.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986023

ABSTRACT

Two-dimensional (2D) materials have attracted considerable attention due to their potential for generating ultrafast pulsed lasers. Unfortunately, the poor stability of most layered 2D materials under air exposure leads to increased fabrication costs; this has limited their development for practical applications. In this paper, we describe the successful preparation of a novel, air-stable, and broadband saturable absorber (SA), the metal thiophosphate CrPS4, using a simple and cost-effective liquid exfoliation method. The van der Waals crystal structure of CrPS4 consists of chains of CrS6 units interconnected by phosphorus. In this study, we calculated the electronic band structures of CrPS4, revealing a direct band gap. The nonlinear saturable absorption properties, which were investigated using the P-scan technique at 1550 nm, revealed that CrPS4-SA had a modulation depth of 12.2% and a saturation intensity of 463 MW/cm2. Integration of the CrPS4-SA into Yb-doped fiber and Er-doped fiber laser cavities led to mode-locking for the first time, resulting in the shortest pulse durations of 298 ps and 500 fs at 1 and 1.5 µm, respectively. These results indicate that CrPS4 has great potential for broadband ultrafast photonic applications and could be developed into an excellent candidate for SA devices, providing new directions in the search for stable SA materials and for their design.

14.
Nanoscale ; 15(9): 4388-4396, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36745395

ABSTRACT

Interface engineering is a promising strategy to enhance the catalytic performance of electrocatalysts for the oxygen reduction reaction (ORR). However, it is still a challenge to modulate the size into a suitable range (e.g., nanocluster-scale) to make the most of the interface. Moreover, the explicit mechanism of the interface for enhancing catalytic performance is still elusive. Herein, a model catalyst (FeCu@NC) loaded with nanocluster-scaled Fe2O3/Cu interfaces was prepared by modulating the metal components of the precursor to explore the enhancement of interface engineering for the ORR. Benefiting from the synergistic effect of the strong interfacial coupling effects of Fe2O3/Cu and optimized microstructure, FeCu@NC exhibited superior ORR activity and zinc-air battery performance. Experimental and theoretical calculations revealed that the presence of the Fe2O3/Cu interface breaks the traditional cognition to endow the Cu atoms (intrinsically inferior for the ORR) with a slight positive charge, which serves as the active sites for the ORR. This study provides a novel insight into the design of advanced electrocatalysts for the ORR by interface engineering.

15.
Inorg Chem ; 62(8): 3609-3615, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36795025

ABSTRACT

Enthusiasm for the exploration of nonlinear alkali metal borates remains high. Focusing on the Li-B-O-X (X = Cl and Br) system, two examples of noncentrosymmetric borates, Li3B8O13Cl and Li3B8O13Br, were obtained using a high-temperature solution method under vacuum conditions. Structurally, the Li3B8O13X crystals exhibit two independent alternately arranged three-dimensional B-O network structures formed by the basic building block unit B8O16. The performance measurements demonstrate their short ultraviolet cutoff edges. The theoretical calculation indicates that the BO3 units dominate the contribution to their large optical anisotropy with the birefringence, 0.094 and 0.088@1064 nm for Li3B8O13Cl and Li3B8O13Br, respectively.

16.
Small ; 19(18): e2206991, 2023 May.
Article in English | MEDLINE | ID: mdl-36772898

ABSTRACT

Regulating the crystal structure by A-site cation substitution is one of the effective methods to explore high-performance nonlinear optical (NLO) materials. Herein, two non-centrosymmetric (NCS) compounds, α-MZnPO4 (M = Li, K) with short UV absorption edges 221 and 225 nm, are obtained by performing A-site cation substitution method. It is noteworthy that α-LiZnPO4 (α-LZPO) achieves >10 times second harmonic generation (SHG) response (2.3 × KDP) enhancement compared with that of α-KZnPO4 (α-KZPO) (0.2 × KDP), which is the only case among phosphates with different A-site cations. By structural comparison, it is found that the A-site cations play important roles for anion rearrangements, and further the structure features of the two compounds by designing two suppositional crystal models as well as performing other theoretical calculations are analyzed. The study confirms the feasibility to design promising NLO materials with strengthen SHG response and structural stability in orthophosphate system.

17.
ACS Appl Mater Interfaces ; 14(49): 54748-54757, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36458335

ABSTRACT

Exploring highly active, stable, and low-cost catalysts for photoelectrochemical hydrogen evolution reaction (PE-HER) is vital in the field of energy conversion. Herein, we construct a new amorphous crystalline interface that amorphous iron-based spinel oxide (A-MFe2O4 (M = Ni, Co, Zn)) is uniformly anchored on the crystalline exfoliated black phosphorus (C-EBP) nanosheets via electrochemical and solvothermal strategies. Among these A-MFe2O4@C-EBP catalysts, more oxygen defects of A-NiFe2O4@C-EBP interface provide a larger effective electrochemical active area of 32.33 mF cm-2 as well as a turnover frequency of 0.44 s-1 and allow for an optimum equilibrium of the hydrogen-containing adsorption intermediates. Furthermore, A-NiFe2O4@C-EBP exhibits significant PE-HER performance with an overpotential of 42 mV at 10 mA cm-2 under visible-light irradiation. Density functional theory (DFT) calculations show that the amorphous-crystalline composite structure causes a large number of oxygen defects enhancing the intrinsic activity of A-NiFe2O4@C-EBP, which A-NiFe2O4@C-EBP significantly improves its adsorption capacity for H* for HER and has the lowest Gibbs free energy change for HER. This study not only provides a superior multifunctional amorphous-crystalline interface catalysts but also helps to understand the catalytic mechanism of PE-HER.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906328

ABSTRACT

Objective:To explore the correlation between the efficacy of <italic>Usnea diffracta</italic> in treating atherosclerosis (AS) and the altered microbial flora in rat ileum based on the interior-exterior relationship between heart and small intestine in traditional Chinese medicine (TCM). Method:Forty-eight SD rats were randomized into a normal group (<italic>n</italic>=8) and a modeling group (<italic>n</italic>=40). The AS model was established with high-fat diet combined with intraperitoneal injection of vitamin D<sub>3</sub>. The successfully modeled rats were further randomly divided into the model group, positive control (simvastatin, 4 mg·kg<sup>-1</sup>) group, and low- (0.7 g·kg<sup>-1</sup>), medium- (1.4 g·kg<sup>-1</sup>), and high-dose (2.8 g·kg<sup>-1</sup>) <italic>U. diffracta</italic> ethanol extract groups, with eight rats in each group. After four weeks of intervention, the blood, aorta, ileum, and ileum content of rats in each group were collected. The levels of serum lipopolysaccharide (LPS), tumor necrosis factor-<italic>α </italic>(TNF-<italic>α</italic>) and interleukin 6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA), and the pathological changes in rat thoracic aorta was detected by hematoxylin-eosin (HE) staining. Western blot was conducted to determine the protein expression levels of tight junction protein zonula occluden (ZO-1) and Occludin in rat ileum, and the high-throughput 16S rRNA sequencing technology was employed to detect changes in microbial diversity and abundance in rat ileum of each group. Result:Compared with the normal group, the model group exhibited obvious aortic plaque deposition, increased LPS, TNF-<italic>α</italic>, and IL-6 levels (<italic>P</italic><0.01), but decreased ZO-1 and Occludin protein expression (<italic>P</italic><0.01). The comparison with the model group revealed that <italic>U. diffracta</italic> significantly ameliorated the aortic plaque deposition of model rats, lowered serum LPS, TNF-<italic>α</italic>, and IL-6 levels (<italic>P</italic><0.05, <italic>P</italic><0.01), and up-regulated ZO-1 and Occludin protein expression (<italic>P</italic><0.05, <italic>P</italic><0.01). The abundance of Proteobacteria and Bacteroidetes in the model group changed significantly in contrast to that in the normal group, and the Bacteroidetes/Firmicutes(B/F) value declined (<italic>P</italic><0.05). Alpha and Beta diversity analysis indicated higher total number of intestinal flora species in the model group, but lower richness and uneven distribution (<italic>P</italic><0.05, <italic>P</italic><0.01), with a large number of pathogenic bacteria enriched. The ethanol extract of <italic>U. diffracta</italic> significantly increased the B/F value, corrected the structural disorder of microbial flora in ileum, reduced pathogenic bacteria, and increased the relative abundance of probiotics. Conclusion:<italic>U. diffracta</italic> exerts the therapeutic effect against AS possibly by improving the intestinal microbial communities, strengthening the intestinal mucosal barrier function, and reducing the serum LPS and inflammatory factors.

19.
Angew Chem Int Ed Engl ; 59(46): 20323-20327, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-32851746

ABSTRACT

To develop high-performance nonlinear optical (NLO) materials for infrared (IR) applications, we have applied a rational element-composition design strategy and investigated the unexplored PbO-PbCl2 -PbI2 system. By doing so, we discovered a new polar lead mixed oxyhalide, Pb18 O8 Cl15 I5 , the first synthetic metal oxyhalide combining both Cl- and I- . Pb18 O8 Cl15 I5 reveals an unprecedented structural feature with two different dimensional types of oxocentered Pb-O units, namely, [O4 Pb8 ]8+ clusters and [OPb2 ]2+ chains. Centimeter-sized single crystals of Pb18 O8 Cl15 I5 have been successfully grown under ambient conditions. Remarkably, Pb18 O8 Cl15 I5 satisfies all fundamental yet rigorous criteria for high-performance IR NLO materials, exhibiting the widest IR transparency (up to 16.0 µm) among oxide-based crystals, strong second-harmonic generation response (1.05×AgGaS2 ), superior birefringence (0.086 at 636 nm), and a high laser-induced damage threshold (8.5×AgGaS2 ).

20.
Angew Chem Int Ed Engl ; 59(40): 17648-17656, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32558985

ABSTRACT

Two new pyrophosphates nonlinear optical (NLO) materials, Rb3 PbBi(P2 O7 )2 (I) and Cs3 PbBi(P2 O7 )2 (II), were successfully designed and synthesized. Both compounds exhibit large NLO effects and birefringences. Material I presents the scarce case of possessing the coexistence of large birefringence (0.031 at 1064 nm and 0.037 at 532 nm) and second harmonic generation (SHG) response (2.8× potassium dihydrogen phosphate (KDP)) in ultraviolet NLO phosphates and its SHG is the largest in the phase-matching (PM) pyrophosphates. Both I and II have three-dimensional (3D) crystal structures composed of corner-shared RbO12 (CsO11 ), RbO10 (CsO10 ), BiO6 , PbO7 (PbO6 ) and P2 O7 groups, in which P2 O7 and PbO7 (PbO6 ) units form an alveolate [PbPO]∞ skeleton frame. Theoretical calculations reveal that the P-O, Bi-O and Pb-O units are mainly responsible for the moderate birefringence and large SHG efficiency of I.

SELECTION OF CITATIONS
SEARCH DETAIL
...