Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559065

ABSTRACT

The self-assembly of Tau(297-391) into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains, thus facilitating the study of their roles in Tau pathology. Using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and a range of optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in the context of cofactor free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the fibril's rigid core are pivotal in the nucleation of PHFs. Moreover, in scenarios involving heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs, except for K311, appeared to decelerate the aggregation process. The impact of acetylation on RNA-induced LLPS was notably site-dependent, exhibiting both facilitative and inhibitory effects, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, enhancing our understanding of the molecular underpinnings of Tau pathology in AD and highlighting the critical role of PTMs located outside the ordered filament core in driving the self-assembly of Tau into PHF structures.

2.
Org Lett ; 26(13): 2590-2595, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38517348

ABSTRACT

In this Letter, we report a direct and robust desulfurization method employing water-soluble phosphine, specifically tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and tetrahydroxydiboron (B2(OH)4), which serves as a radical initiator. This innovative reaction exhibits compatibility with a diverse array of substrates, including cysteine residues in chemically synthesized oligopeptides and cyclic peptides, alkyl thiols in bioactive molecules, disulfides in commercial proteins, and selenocysteine. We optimized the reaction conditions to minimize the formation of undesired oxidized and borylated byproducts. Furthermore, the refined desulfurization process is executed after native chemical ligation (NCL) in a single pot, streamlining the existing synthetic approaches. This demonstrates its potential applications in the synthesis of complex peptides and proteins, showcasing a significant advancement in the field.


Subject(s)
Peptides , Proteins , Indicators and Reagents , Peptides/chemistry , Proteins/chemistry , Cysteine/chemistry , Sulfhydryl Compounds/chemistry
3.
J Am Chem Soc ; 145(41): 22354-22360, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37812507

ABSTRACT

We introduce a direct conversion of alkyl thiols into boronic acids, facilitated by a water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), in conjunction with tetrahydroxydiboron (B2(OH)4), acting as both a radical initiator and a boron source. This desulfurative borylation reaction has been successfully applied to various substrates, including cysteine residues in oligopeptides and small proteins, primary alkyl thiols found in pharmaceutical compounds, disulfides, and selenocysteine. Optimization of reaction conditions was undertaken to reduce the formation of unwanted reactions, such as the reduction of alanyl or other primary radicals, and to prevent deleterious reactions between the phosphine and N-terminal amine that lead to methylene adducts by utilizing a buffer containing glycine-glycine (GG) dipeptide. The developed method is characterized by its operational simplicity and robustness. Moreover, its compatibility with various functional groups present in peptides and proteins makes it a promising tool for late-stage functionalization, extending its potential application across a broad spectrum of chemical and biological targets.


Subject(s)
Peptides , Proteins , Proteins/chemistry , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Glycine
4.
J Am Chem Soc ; 145(39): 21514-21526, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37737824

ABSTRACT

Deposits of the microtubule-associated protein Tau (MAPT) serve as a hallmark of neurodegenerative diseases known as tauopathies. Numerous studies have demonstrated that in diseases such as Alzheimer's disease (AD), Tau undergoes extensive remodeling. The attachment of post-translational modifications distributed throughout the entire sequence of the protein correlates with clinical presentation. A systematic examination of these protein alterations can shed light on their roles in both healthy and diseased states. However, the ability to access these modifications in the entire protein chain is limited as Tau can only be produced recombinantly or through semisynthesis. In this article, we describe the first chemical synthesis of the longest 2N4R isoform of Tau, consisting of 441 amino acids. The 2N4R Tau was divided into 3 major segments and a total of 11 fragments, all of which were prepared via solid-phase peptide synthesis. The successful chemical strategy has relied on the strategic use of two cysteine sites (C291 and C322) for the native chemical ligations (NCLs). This was combined with modern preparative protein chemistries, such as mercaptothreonine ligation (T205), diselenide-selenoester ligation (D358), and mutations of mercaptoamino acids into native residues via homogeneous radical desulfurization (A40, A77, A119, A157, A246, and A390). The successful completion of the synthesis has established a robust and scalable route to the native protein in multimilligram quantities and high purity. In broader terms, the presented strategy can be applied to the preparation of other shorter isoforms of Tau as well as to introduce all post-translational modifications that are characteristic of tauopathies such as AD.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , tau Proteins/chemistry , Alzheimer Disease/metabolism , Protein Processing, Post-Translational , Protein Isoforms/chemistry , Solid-Phase Synthesis Techniques
5.
Chem Catal ; 1(4): 870-884, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34738092

ABSTRACT

Selective modifications of peptides and proteins have emerged as a promising strategy to develop novel mechanistic probes and prepare compounds with translational potentials. Here, we report alanine carbastannatranes AlaSn as a universal synthon in various C-C and C-heteroatom bond-forming reactions. These reagents are compatible with peptide manipulation techniques and can undergo chemoselective conjugation in minutes when promoted by Pd(0). Despite their increased nucleophilicity and propensity to transfer the alkyl group, C(sp3)-C(sp2) coupling with AlaSn can be accomplished at room temperature under buffered conditions (pH 6.5-8.5). We also show that AlaSn can be easily transformed into several canonical L- and D-amino acids in arylation, acylation, and etherification reactions. Furthermore, AlaSn can partake in macrocyclizations exemplified by the synthesis of medium size cyclic peptides with various topologies. Taken together, metalated alanine AlaSn demonstrates unparalleled scope and represents a new type of umpolung reagents suitable for structure-activity relationship studies and peptide diversification.

SELECTION OF CITATIONS
SEARCH DETAIL
...