Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38488068

ABSTRACT

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Tubers , Solanum tuberosum , Transcription Factors , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Solanum tuberosum/growth & development , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/metabolism , Plant Tubers/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Hortic Res ; 10(4): uhad035, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37799627

ABSTRACT

Cold-induced sweetening (CIS), the undesirable sugar accumulation in cold-stored potato (Solanum tuberosum L.) tubers, is a severe postharvest issue in the potato processing industry. Although the process of sucrose hydrolysis by vacuolar invertase during potato CIS is well understood, there is limited knowledge about the transportation of sucrose from the cytosol to the vacuole during postharvest cold storage. Here, we report that among the three potato tonoplast sugar transporters (TSTs), StTST1 exhibits the highest expression in tubers during postharvest cold storage. Subcellular localization analysis demonstrates that StTST1 is a tonoplast-localized protein. StTST1 knockdown decreases reducing sugar accumulation in tubers during low-temperature storage. Compared to wild-type, potato chips produced from StTST1-silenced tubers displayed significantly lower acrylamide levels and lighter color after cold storage. Transcriptome analysis manifests that suppression of StTST1 promotes starch synthesis and inhibits starch degradation in cold-stored tubers. We further establish that the increased sucrose content in the StTST1-silenced tubers might cause a decrease in the ABA content, thereby inhibiting the ABA-signaling pathway. We demonstrate that the down-regulation of ß-amylase StBAM1 in StTST1-silenced tubers might be directly controlled by ABA-responsive element-binding proteins (AREBs). Altogether, we have shown that StTST1 plays a critical role in sugar accumulation and starch metabolism regulation during postharvest cold storage. Thus, our findings provide a new strategy to improve the frying quality of cold-stored tubers and reduce the acrylamide content in potato chips.

3.
Plant Commun ; 4(3): 100547, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36635965

ABSTRACT

Plants program their meristem-associated developmental switches for timely adaptation to a changing environment. Potato (Solanum tuberosum L.) tubers differentiate from specialized belowground branches or stolons through radial expansion of their terminal ends. During this process, the stolon apex and closest axillary buds enter a dormancy state that leads to tuber eyes, which are reactivated the following spring and generate a clonally identical plant. The potato FLOWERING LOCUS T homolog SELF-PRUNING 6A (StSP6A) was previously identified as the major tuber-inducing signal that integrates day-length cues to control the storage switch. However, whether some other long-range signals also act as tuber organogenesis stimuli remains unknown. Here, we show that the florigen SELF PRUNING 3D (StSP3D) and FLOWERING LOCUS T-like 1 (StFTL1) genes are activated by short days, analogously to StSP6A. Overexpression of StSP3D or StFTL1 promotes tuber formation under non-inductive long days, and the tuber-inducing activity of these proteins is graft transmissible. Using the non-tuber-bearing wild species Solanum etuberosum, a natural SP6A null mutant, we show that leaf-expressed SP6A is dispensable for StSP3D long-range activity. StSP3D and StFTL1 mediate secondary activation of StSP6A in stolon tips, leading to amplification of this tuberigen signal. StSP3D and StFTL1 were observed to bind the same protein partners as StSP6A, suggesting that they can also form transcriptionally active complexes. Together, our findings show that additional mobile tuber-inducing signals are regulated by the photoperiodic pathway.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Transcription Factors/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism
4.
Plant J ; 113(2): 402-415, 2023 01.
Article in English | MEDLINE | ID: mdl-36562774

ABSTRACT

Photoperiod plays a critical role in controlling the formation of sexual or vegetative reproductive organs in potato. Although StPHYF-silenced plants overcome day-length limitations to tuberize through a systemic effect on tuberigen StSP6A expression in the stolon, the comprehensive regulatory network of StPHYF remains obscure. Therefore, the present study investigated the transcriptomes of StPHYF-silenced plants and observed that, in addition to known components of the photoperiodic tuberization pathway, florigen StSP3D and other flowering-related genes were activated in StPHYF-silenced plants, exhibiting an early flowering response. Additionally, grafting experiments uncovered the long-distance effect of StPHYF silencing on gene expression in the stolon, including the circadian clock components, flowering-associated MADSs, and tuberization-related regulatory genes. Similar to the AtFT-AtAP1 regulatory module in Arabidopsis, the present study established that the AP1-like StMADS1 functions downstream of the tuberigen activation complex (TAC) and that suppressing StMADS1 inhibits tuberization in vitro and delays tuberization in vivo. Moreover, the expression of StSP6A was downregulated in StMADS1-silenced plants, implying the expression of StSP6A may be feedback-regulated by StMADS1. Overall, these results reveal that the regulatory network of StPHYF controls flowering and tuberization and targets the crucial tuberization factor StMADS1 through TAC, thereby providing a better understanding of StPHYF-mediated day-length perception during potato reproduction.


Subject(s)
Arabidopsis , Phytochrome , Solanum tuberosum , Phytochrome/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Transcriptome , Plant Tubers/metabolism , Plant Leaves/metabolism , Photoperiod , Arabidopsis/genetics , Reproduction , Gene Expression Regulation, Plant/genetics
5.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012392

ABSTRACT

SELF-PRUNING 6A (SP6A), a homolog of FLOWERING LOCUS T (FT), has been identified as tuberigen in potato. StSP6A is a mobile signal synthesized in leaves and transmitted to the stolon through phloem, and plays multiple roles in the growth and development of potato. However, the global StSP6A protein interaction network in potato remains poorly understood. In this study, BK-StSP6A was firstly used as the bait to investigate the StSP6A interaction network by screening the yeast two-hybrid (Y2H) library of potato, resulting in the selection of 200 independent positive clones and identification of 77 interacting proteins. Then, the interaction between StSP6A and its interactors was further confirmed by the Y2H and BiFC assays, and three interactors were selected for further expression analysis. Finally, the expression pattern of Flowering Promoting Factor 1.1 (StFPF1.1), No Flowering in Short Days 1 and 2 (StNFL1 and StNFL2) was studied. The three genes were highly expressed in flowers or flower buds. StFPF1.1 exhibited an expression pattern similar to that of StSP6A at the stolon swelling stages. StPHYF-silenced plants showed up-regulated expression of StFPF1.1 and StSP6A, while expression of StNFL1 and StNFL2 was down-regulated in the stolon. The identification of these interacting proteins lays a solid foundation for further functional studies of StSP6A.


Subject(s)
Solanum tuberosum , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Solanum tuberosum/metabolism
6.
Plant Physiol ; 189(3): 1677-1693, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35258599

ABSTRACT

Potato (Solanum tuberosum L.) maturity involves several important traits, including the onset of tuberization, flowering, leaf senescence, and the length of the plant life cycle. The timing of flowering and tuberization in potato is mediated by seasonal fluctuations in photoperiod and is thought to be separately controlled by the FLOWERING LOCUS T-like (FT-like) genes SELF-PRUNING 3D (StSP3D) and SELF-PRUNING 6A (StSP6A). However, the biological relationship between these morphological transitions that occur almost synchronously remains unknown. Here, we show that StABI5-like 1 (StABL1), a transcription factor central to abscisic acid (ABA) signaling, is a binding partner of StSP3D and StSP6A, forming an alternative florigen activation complex and alternative tuberigen activation complex in a 14-3-3-dependent manner. Overexpression of StABL1 results in the early initiation of flowering and tuberization as well as a short life cycle. Using genome-wide chromatin immunoprecipitation sequencing and RNA-sequencing, we demonstrate that AGAMOUS-like and GA 2-oxidase 1 genes are regulated by StABL1. Phytohormone profiling indicates an altered gibberellic acid (GA) metabolism and that StABL1-overexpressing plants are insensitive to the inhibitory effect of GA with respect to tuberization. Collectively, our results suggest that StABL1 functions with FT-like genes to promote flowering and tuberization and consequently life cycle length in potato, providing insight into the pleiotropic functioning of the FT gene.


Subject(s)
Solanum tuberosum , Flowers/physiology , Gene Expression Regulation, Plant , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Solanum tuberosum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant J ; 109(4): 952-964, 2022 02.
Article in English | MEDLINE | ID: mdl-34837279

ABSTRACT

Phytohormones and their interactions play critical roles in Solanum tuberosum (potato) tuberization. The stimulatory role of jasmonic acid (JA) in tuber development is well established because of its significant promotion of tuber initiation and tuber bulking. However, the dynamics and potential function of JA signalling in potato tuberization remain largely unknown. The present study investigated the role of the JAZ1 subtype, a suppressor of JA signalling, in potato tuberization. Using 35S:StJAZ1-like-GUS as a reporter, we showed that JA signalling was attenuated from the bud end to the stem end shortly after tuber initiation. Overexpression of StJAZ1-like suppressed tuber initiation by restricting the competence for tuber formation in stolon tips, as demonstrated by grafting an untransformed potato cultivar to the stock of StJAZ1-like-overexpressing transgenic potato plants (StJAZ1-like ox). In addition, transcriptional profiling analysis revealed that StJAZ1-like modulates the expression of genes associated with transcriptional regulators, cell cycle, cytoskeleton and phytohormones. Furthermore, we showed that StJAZ1-like is destabilised upon treatment with abcisic acid (ABA), and the attenuated tuberization phenotype in StJAZ1-like ox plants can be partially rescued by ABA treatment. Altogether, these results revealed that StJAZ1-like-mediated JA signalling plays an essential role in potato tuberization.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Tubers/metabolism , Repressor Proteins/metabolism , Signal Transduction , Solanum tuberosum/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots , Plants, Genetically Modified/genetics , Repressor Proteins/genetics , Solanum tuberosum/genetics , Transcription Factors/metabolism , Transcriptome
8.
Hortic Res ; 8(1): 181, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34465755

ABSTRACT

Overcoming short-day-dependent tuberization to adapt to long-day conditions is critical for the widespread geographical success of potato. The genetic pathways of photoperiodic tuberization are similar to those of photoperiodic flowering. DNA methylation plays an important role in photoperiodic flowering. However, little is known about how DNA methylation affects photoperiodic tuberization in potato. Here, we verified the effect of a DNA methylation inhibitor on photoperiodic tuberization and compared the DNA methylation levels and differentially methylated genes (DMGs) in the photoperiodic tuberization process between photoperiod-sensitive and photoperiod-insensitive genotypes, aiming to dissect the role of DNA methylation in the photoperiodic tuberization of potato. We found that a DNA methylation inhibitor could promote tuber initiation in strict short-day genotypes. Whole-genome DNA methylation sequencing showed that the photoperiod-sensitive and photoperiod-insensitive genotypes had distinct DNA methylation modes in which few differentially methylated genes were shared. Transcriptome analysis confirmed that the DNA methylation inhibitor regulated the expression of the key genes involved in the photoperiod and GA pathways to promote tuber initiation in the photoperiod-sensitive genotype. Comparison of the DNA methylation levels and transcriptome levels identified 52 candidate genes regulated by DNA methylation that were predicted to be involved in photoperiodic tuberization. Our findings provide a new perspective for understanding the relationship between photoperiod-dependent and GA-regulated tuberization. Uncovering the epigenomic signatures of these pathways will greatly enhance potato breeding for adaptation to a wide range of environments.

9.
Plant J ; 98(1): 42-54, 2019 04.
Article in English | MEDLINE | ID: mdl-30552774

ABSTRACT

The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F (StPHYF) played essential roles in photoperiodic tuberization in potato. By suppressing the StPHYF gene, the strict short-day potato genotype exhibited normal tuber formation under long-day (LD) conditions, together with the degradation of the CONSTANTS protein StCOL1 and modulation of two FLOWERING LOCUS T (FT) paralogs, as demonstrated by the repression of StSP5G and by the activation of StSP6A during the light period. The function of StPHYF was further confirmed through grafting the scion of StPHYF-silenced lines, which induced the tuberization of untransformed stock under LDs, suggesting that StPHYF was involved in the production of mobile signals for tuberization in potato. We also identified that StPHYF exhibited substantial interaction with StPHYB both in vitro and in vivo. Therefore, our results indicate that StPHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with StPHYB.


Subject(s)
Phytochrome/metabolism , Solanum tuberosum/physiology , Genotype , Photoperiod , Phytochrome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/physiology , Plant Tubers/radiation effects , Solanum tuberosum/genetics , Solanum tuberosum/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...