Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 54(24): 4545-4564, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34847327

ABSTRACT

One of the major challenges facing organic synthesis in the 21st century is the utilization of abundantly available feedstock chemicals for fine chemical synthesis. Regio- and enantioselective union of easily accessible 1,3-dienes and other feedstocks like ethylene, alkyl acrylates, and aldehydes can provide valuable building blocks adorned with latent functionalities for further synthetic elaboration. Through an approach that relies on mechanistic insights and systematic examination of ligand and counterion effects, we developed an efficient cobalt-based catalytic system [(P∼P)CoX2/Me3Al] (P∼P = bisphosphine) to effect the first enantioselective heterodimerization of several types of 1,3-dienes with ethylene. In addition to simple cyclic and acyclic dienes, siloxy-1,3-dienes participate in this reaction, giving highly functionalized, nearly enantiopure silyl enolates, which can be used for subsequent C-C and C-X bond-forming reactions. As our understanding of the mechanism of this reaction improved, our attention was drawn to more challenging partners like alkyl acrylates (one of the largest volume feedstocks) as the olefin partners instead of ethylene. Prompted by the intrinsic limitations of using aluminum alkyls as the activators for this reaction, we explored the fundamental chemistry of the lesser known (P∼P)Co(I)X species and discovered that in the presence of halide sequestering agents, such as sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBARF) or (C6F5)3B, certain chiral bisphosphine complexes are superb catalysts for regio- and enantioselective heterodimerization of 1,3-dienes and alkyl acrylates. We have since found that these cationic Co(I) catalysts, most conveniently prepared in situ by reduction of the corresponding cobalt(II) halide complexes by zinc in the presence of NaBARF, promote enantioselective [2 + 2]-cycloaddition between alkynes and an astonishing variety of alkenyl derivatives to give highly functionalized cyclobutenes. In reactions between 1,3-enynes and ethylene, the [2 + 2]-cycloaddition between the alkyne and ethylene is followed by a 1,4-addition of ethylene in a tandem fashion to give nearly enantiopure cyclobutanes with an all-carbon quaternary center, giving a set of molecules that maps well into many medicinally relevant compounds. In another application, we find that the cationic Co(I)-catalysts promote highly selective hydroacylation and 1,2-hydroboration of prochiral 1,3-dienes. Further, we find that a cationic Co(I)-catalyst promotes cycloisomerization followed by hydroalkenylation of 1,6-enynes to produce highly functionalized carbo- and heterocyclic compounds. Surprisingly the regioselectivity of the alkene addition depends on whether it is a simple alkene or an acrylate, and the acrylate addition produces an uncommon Z-adduct. This Account will provide a summary of the enabling basic discoveries and the attendant developments that led to the unique cationic Co(I)-complexes as catalysts for disparate C-C and C-B bond-forming reactions. It is our hope that this Account will stimulate further work with these highly versatile catalysts which are derived from an earth-abundant metal.


Subject(s)
Alkenes , Cobalt , Catalysis , Cycloaddition Reaction , Molecular Structure , Stereoisomerism
2.
J Am Chem Soc ; 141(18): 7365-7375, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31020835

ABSTRACT

Much of the recent work on catalytic hydroboration of alkenes has focused on simple alkenes and styrene derivatives with few examples of reactions of 1,3-dienes, which have been reported to undergo mostly 1,4-additions to give allylic boronates. We find that reduced cobalt catalysts generated from 1,n- bis-diphenylphosphinoalkane complexes [Ph2P-(CH2) n-PPh2]CoX2; n = 1-5) or from (2-oxazolinyl)phenyldiarylphosphine complexes [(G-PHOX)CoX2] (G = 4-substituent on oxazoline ring) effect selective 1,2-, 1,4-, or 4,3-additions of pinacolborane (HBPin) to a variety of 1,3-dienes depending on the ligands chosen. Conditions have been found to optimize the 1,2-additions. The reactive catalysts can be generated from the cobalt(II)-complexes using trimethylaluminum, methyl aluminoxane, or activated zinc in the presence of sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBARF). The complex, (dppp)CoCl2, gives the best results (ratio of 1,2- to 1,4-addition >95:5) for a variety of linear terminal 1,3-dienes and 2-substituted 1,3-dienes. The [(PHOX)CoX2] (X = Cl, Br) complexes give mostly 1,4-addition with linear unsubstituted 1,3-dienes, but, surprisingly, selective 1,2-additions with 2-substituted or 2,3-disubstituted 1,3-dienes. Isolated and fully characterized (X-ray crystallography) Co(I)-complexes, (dppp)3Co2Cl2 and [( S,S)-BDPP]3Co2Cl2, do not catalyze the reaction unless activated by a Lewis acid or NaBARF, suggesting a key role for a cationic Co(I) species in the catalytic cycle. Regio- and enantioselective 1,2-hydroborations of 2-substituted 1,3-dienes are best accomplished using a catalyst prepared via activation of a chiral phosphinooxazoline-cobalt(II) complex with zinc and NaBARF. A number of common functional groups, among them, -OBn, -OTBS, -OTs, N-phthalimido- groups, are tolerated, and er's > 95:5 are obtained for several dienes including 1-alkenylcycloalk-1-enes. This operationally simple reaction expands the realm of asymmetric hydroboration to provide direct access to a number of nearly enantiopure homoallylic boronates, which are not readily accessible by current methods. The resulting boronates have been converted into the corresponding alcohols, potassium trifluororoborate salts, N-BOC amines, and aryl derivatives by C-BPin to C-aryl transformation.


Subject(s)
Alkadienes/chemistry , Boranes/chemical synthesis , Cobalt/chemistry , Organometallic Compounds/chemistry , Boranes/chemistry , Catalysis , Cations/chemistry , Molecular Structure , Stereoisomerism
3.
J Am Chem Soc ; 139(49): 18034-18043, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29120629

ABSTRACT

1,3-Dienes are ubiquitous and easily synthesized starting materials for organic synthesis, and alkyl acrylates are among the most abundant and cheapest feedstock carbon sources. A practical, highly enantioselective union of these two readily available precursors giving valuable, enantio-pure skipped 1,4-diene esters (with two configurationally defined double bonds) is reported. The process uses commercially available cobalt salts and chiral ligands. As illustrated by the use of 20 different substrates, including 17 prochiral 1,3-dienes and 3 acrylates, this hetero-dimerization reaction is tolerant of a number of common organic functional groups (e.g., aromatic substituents, halides, isolated mono- and di-substituted double bonds, esters, silyl ethers, and silyl enol ethers). The novel results including ligand, counterion, and solvent effects uncovered during the course of these investigations show a unique role of a possible cationic Co(I) intermediate in these reactions. The rational evolution of a mechanism-based strategy that led to the eventual successful outcome and the attendant support studies may have further implications for the expanding use of low-valent group 9 metal complexes in organic synthesis.


Subject(s)
Acrylates/chemistry , Polyenes/chemistry , Catalysis , Cobalt/chemistry , Dimerization , Esters/chemistry , Ethers/chemistry , Ligands
4.
ACS Catal ; 7(4): 2275-2283, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28593082

ABSTRACT

Readily accessible ( i-PrPDI)CoCl2 [ i-Pr PDI = 2,6-bis(2,6-diisopropylphenyliminoethyl)pyridine] reacts with 2 equivalents of NaEt3BH at -78 °C in toluene to generate a catalyst that effects highly selective anti-Markovnikov hydrosilylation of the terminal double bond in 1,3- and 1,4-dienes. Primary and secondary silanes such as PhSiH3, Ph2SiH2 and PhSi(Me)H2 react with a broad spectrum of terminal dienes without affecting the configuration of the other double bond. When dienes conjugated to an aromatic ring are involved, both Markovnikov and anti-Markovnikov products are formed. The reaction is tolerant of various functional groups such as an aryl bromide, aryl iodide, protected alcohol, and even a silyl enol ether. Reactions of 1-alkene under similar conditions cleanly lead to a mixture of Markovnikov and anti-Markovnikov hydrosilation products, where ratio of the products increasingly favors the latter, as the size of the 2,6-substituents in the iminoylaryl group becomes larger. The complex ( i-PrPDI)CoCl2 gives exclusively the linear silane for a wide variety of terminal alkenes. Mechanistic studies suggest a pathway that involves a key role for an in situ generated metal hydride, (L)Co(I)-H. Exclusive reduction of the terminal double bond (vis-a-vis hydrosilylation) when (EtO)2Si(Me)H is used in the place of PhSiH3 is explained on the basis of an alternate silane-mediated decomposition path for the linear Co(I)-alkyl intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...