Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703356

ABSTRACT

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Subject(s)
Esterases , Insect Proteins , Insecta , Insecticides , Malathion , Animals , Drosophila melanogaster , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Inactivation, Metabolic , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insecta/drug effects , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Malathion/metabolism , Malathion/chemistry , Malathion/toxicity , Malathion/pharmacology
2.
Insects ; 13(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36005318

ABSTRACT

Uroleucon formosanum is an important aphid pest of lettuce, but basic information on its biology is scarce. In this study, effects of three constant temperatures (17, 21, and 25 °C, simulating the mean temperature range in greenhouses) on the development and fecundity of U. formosanum were analyzed by constructing a life table. U. formosanum could develop and reproduce under all three temperatures, but the survival rate, development, and fecundity of U. formosanum were affected by temperature. The intrinsic rate of increase was lowest at 17 °C (0.17) and it was significantly less than at 21 °C (0.20) and 25 °C (0.23). Furthermore, U. formosanum had the lowest finite rate of increase (1.19) and the largest mean generation time (20.21) at 17 °C. These results mean that U. formosanum is less adapted to the lower temperatures (17 °C) among these three set temperatures. To screen insecticides for control, susceptibility of U. formosanum to six insecticides including chlorpyrifos, abamectin, beta-cypermethrin, imidacloprid, nitenpyram, and thiamethoxam was evaluated. U. formosanum was relatively sensitive to all six test insecticides. Chlorpyrifos had the highest toxicity to U. formosanum (LC50 = 3.08 mg/L). These data may help to develop integrated management strategies for better population control of U. formosanum.

3.
Insect Mol Biol ; 31(6): 772-781, 2022 12.
Article in English | MEDLINE | ID: mdl-35860987

ABSTRACT

The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.


Subject(s)
Insect Proteins , Tephritidae , Animals , Insect Proteins/metabolism , Desiccation , Tephritidae/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydrocarbons/metabolism , Drosophila/genetics , Water
4.
Pest Manag Sci ; 77(5): 2292-2301, 2021 May.
Article in English | MEDLINE | ID: mdl-33423365

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS: RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION: LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.


Subject(s)
Insecticides , RNA, Long Noncoding , Tephritidae , Animals , Female , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Male , RNA, Long Noncoding/genetics , Tephritidae/genetics
5.
Pest Manag Sci ; 77(2): 677-685, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33073914

ABSTRACT

BACKGROUND: The Asian citrus psyllid Diaphorina citri has developed high levels of resistance to many insecticides, and understanding its resistance mechanism will aid in the chemical control of this species. Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is crucial in cytochrome P450 function, and in some insects CPR knockdown has increased their susceptibility to insecticides. However, the CPR from D. citri has not been characterized and its function is undescribed. RESULTS: The CPR gene of D. citri (DcCPR) was cloned and sequenced. The expression level of DcCPR, determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis, was highest in the midgut and in nymphs. After feeding on double-stranded RNA for 72 h, the DcCPR messenger RNA level in D. citri adults decreased by 68.4%, and the susceptibility of D. citri to imidacloprid and thiamethoxam significantly increased. Meanwhile, after DcCPR silencing, the specific activities of DcCPR protein and P450s were significantly reduced by 41.6% and 44.7%, respectively. The subsequent western blot analysis and quantification of band intensity also showed that DcCPR content significantly decreased, consistent with the results of the specific activity test. In a eukaryotic expression assay, the viability of cells expressing DcCPR was significantly higher than the viability of cells expressing green fluorescent protein (GFP) when cells were exposed to imidacloprid or thiamethoxam. CONCLUSION: These results indicate that DcCPR contributes to D. citri susceptibility to imidacloprid and thiamethoxam.


Subject(s)
Citrus , Hemiptera , Insecticides , Animals , Cytochrome P-450 Enzyme System/genetics , Hemiptera/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , NADPH-Ferrihemoprotein Reductase/genetics , Neonicotinoids , Nitro Compounds , Thiamethoxam
6.
Insects ; 11(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261171

ABSTRACT

Psocids are a new risk for global food security and safety because they are significant worldwide pests of stored products. Among these psocids, Liposcelis bostrychophila has developed high levels of resistance or tolerance to heat treatment in grain storage systems, and thus has led to investigation of molecular mechanisms underlying heat tolerance in this pest. In this study, the time-related effects of thermal stress treatments at relatively high temperatures on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST) and malondialdehyde (MDA), of L. bostrychophila were determined. Thermal stress resulted that L. bostrychophila had a significantly higher MDA concentration at 42.5 °C, which indicated that the heat stress increased lipid peroxidation (LPO) contents and oxidative stress in this psocid pest. Heat stress also resulted in significant elevation of SOD, CAT and GST activities but decreased POD activity. Our data indicates that different antioxidant enzymes contribute to defense mechanisms, counteracting oxidative damage in varying levels. POD play minor roles in scavenging deleterious LPO, while enhanced SOD, CAT and GST activities in response to thermal stress likely play a more important role against oxidative damage. Here, we firstly identified five LbHsps (four LbHsp70s and one LbHsp110) from psocids, and most of these LbHsps (except LbHsp70-1) are highly expressed at fourth instar nymph and adults, and LbHsp70-1 likely presents as a cognate form of HSP due to its non-significant changes of expression. Most LbHsp70s (except LbHsp70-4) are significantly induced at moderate high temperatures (<40 °C) and decreased at extreme high temperatures (40-45 °C), but LbHsp110-1 can be significantly induced at all high temperatures. Results of this study suggest that the LbHsp70s and LbHsp110 genes are involved in tolerance to thermal stress in L. bostrychophila, and antioxidant enzymes and heat shock proteins may be coordinately involved in the tolerance to thermal stress in psocids.

7.
Front Physiol ; 11: 582505, 2020.
Article in English | MEDLINE | ID: mdl-33101062

ABSTRACT

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the principal vector of the Candidatus Liberibacter asiaticus (CLas) bacterium that causes Huanglongbing (HLB) disease. The D. citri salivary glands (SG) is an important barrier to the transmission of CLas. Despite its importance, the transcriptome and proteome of SG defense against CLas are unstudied in D. citri. In the present study, we generated a comparative transcriptome dataset of the SG in infected and uninfected D. citri using an Illumina RNA-Seq technology. We obtained 407 differentially expressed genes (DEGs), including 159 upregulated DEGs and 248 downregulated DEGs. Functional categories showed that many DEGs were associated with the ribosome, the insecticide resistance, the immune response and the digestion in comparison with CLas-infected SG and CLas-free SG. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases confirmed that metabolism and immunity were important functions in the SG. Among the DEGs, 68 genes (35 upregulated and 33 downregulated) encoding putative-secreted proteins were obtained with a signal peptide, suggesting that these genes may play important roles in CLas infection. A total of 673 SG proteins were identified in uninfected D. citri by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis, and 30 DEGs (15 upregulated and 15 downregulated) were found using the local tBLASTP programs. Among the 30 DEGs, many DEGs mainly involved in the metabolism and cellular processes pathways. This study provides basic transcriptome and proteome information for the SG in D. citri, and helps illuminate the molecular interactions between CLas and D. citri.

8.
Pest Manag Sci ; 76(9): 2932-2943, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32400962

ABSTRACT

BACKGROUND: Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its resistance to insecticides is a major obstacle in successful control. Cytochrome P450s (P450s) are major metabolic enzymes associated with insecticide resistance. The genome of B. dorsalis was sequenced recently, allowing an integrated genome-wide analysis of P450 genes (P450s) and the analysis of correlations between these genes and insecticide resistance in this pest. RESULTS: Totally, 101 P450s were identified in the B. dorsalis genome and classified into four clans, 25 families and 57 subfamilies. Quantitative reverse transcription polymerase chain reaction results showed that most of these genes were highly expressed in adults (46) and in metabolic tissues, including the fatbody (63), midgut (61) and Malphagian tubules (66). In a malathion-resistant strain, 13 and 9 genes were significantly upregulated and downregulated, respectively, compared with a susceptible strain, and these genes were screened as candidate genes associated with malathion resistance. CONCLUSION: This study provides useful information for understanding the evolution and potential functions of P450s in B. dorsalis, and the results lay the foundation for further studies on the correlations between P450s and malathion resistance in B. dorsalis. © 2020 Society of Chemical Industry.


Subject(s)
Insecticides , Tephritidae , Animals , Cytochrome P-450 Enzyme System/genetics , Humans , Insecticide Resistance/genetics , Insecticides/pharmacology , Malathion/pharmacology , Tephritidae/genetics
9.
Insects ; 10(9)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484469

ABSTRACT

Intrapuparial development is a special pattern of metamorphosis in cyclorrhaphous flies, in which the pupa forms in an opaque, barrel-like puparium. This has been well studied in forensic insects for age estimations. In this study, the intrapuparial development of a quarantine agricultural pest, Bactrocera dorsalis (Hendel), was studied under a constant temperature of 27 ± 1 °C and 70 ± 5% relative humidity. Results showed that intrapuparial development could be divided into five stages: Larval-pupal apolysis, cryptocephalic pupa, phanerocephalic pupa, pharate adult, and emergent adult. It lays a morphology-based foundation for molecular mechanism studies and enhances the understanding of the physiological basis for changes in intrapuparial development. More importantly, the chronology of intrapuparial development can be used to predict the emergence time of tephritid flies, indicating when to spray insecticides to control these phytophagous agricultural pests. This may be an effective approach to reduce the use of insecticides and slow down the evolution of insecticidal resistance.

10.
Pest Manag Sci ; 75(6): 1527-1538, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30610767

ABSTRACT

BACKGROUND: The oriental fruit fly Bactrocera dorsalis (Hendel), a widespread agricultural pest, has evolved resistance to many insecticides, including organophosphorus compounds. Glutathione S-transferases (GSTs) are involved in xenobiotic detoxification and insecticide resistance in many insects. However, the role of delta class GSTs in detoxifying malathion in B. dorsalis is unknown. Here, we evaluated the roles of two delta class GSTs in malathion detoxification in this species. RESULTS: Two delta class GSTs genes, BdGSTd1 and BdGSTd10, were characterized in B. dorsalis. They were highly expressed in 5-day-old adults, as well as in midgut and Malpighian tubules. Upon malathion exposure, the two genes were upregulated by 2.63- and 2.85-fold, respectively. Injection of double-stranded RNA targeting BdGSTd1 or BdGSTd10 significantly reduced their mRNA levels in adults and also significantly increased adult susceptibility to malathion. The expression of these two GSTs in Escherichia coli helped the host to endure malathion stress at a concentration of 10 µg mL-1 according to a Cell Counting Kit-8 assay. High-performance liquid chromatography analyses indicated that malathion could be significantly depleted by the two delta GSTs. The role of BdGSTd10 in malathion sequestration was also discussed. CONCLUSION: BdGSTd1 and BdGSTd10 play important roles in the detoxification of malathion in B. dorsalis. © 2019 Society of Chemical Industry.


Subject(s)
Glutathione Transferase/metabolism , Inactivation, Metabolic , Malathion/metabolism , Tephritidae/metabolism , Amino Acid Sequence , Animals , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Glutathione Transferase/chemistry , Glutathione Transferase/deficiency , Glutathione Transferase/genetics , Kinetics , Malathion/toxicity , Phylogeny , Tephritidae/enzymology
11.
Front Physiol ; 9: 986, 2018.
Article in English | MEDLINE | ID: mdl-30158872

ABSTRACT

NADPH-cytochrome P450 reductase (CPR) plays an essential role in the cytochrome P450 enzyme system, which aids in the metabolism of endogenous and exogenous compounds including the detoxification of insecticides. In this study, the CPR transcript in Aphis (Toxoptera) citricidus (Kirkaldy) was cloned, and the deduced amino acid sequence contained an N-terminal membrane anchor, three conserved binding domains (flavin mononucleotide, flavin adeninedinucleotide, and nicotinamide adenine dinucleotide phosphate), a flavin adeninedinucleotide-binding motif, and catalytic residues. Based on phylogenetic analysis, AcCPR was grouped in the hemipteran branch. AcCPR was ubiquitously expressed at all developmental stages and was most abundant in the adults and least abundant in third instar nymphs. Compared with other tested tissues of adults, the expression level of AcCPR was significantly high in the gut. Feeding double-stranded RNA of AcCPR reduced the AcCPR mRNA level and the activity of AcCPR in aphids, and the treated insects exhibited higher susceptibility to abamectin than the control group. Furthermore, the heterologous overexpression of AcCPR in Sf9 cells resulted in a greater viability than control cells when treated with abamectin. All results demonstrated that AcCPR may contribute to the resistance of A.citricidus to abamectin, and CPR may be a potential target for novel insecticide design or a new factor in the development of insecticide resistance.

12.
Article in English | MEDLINE | ID: mdl-29121518

ABSTRACT

The ATP-binding cassette (ABC) is the largest transporter gene family and the genes play key roles in xenobiotic resistance, metabolism, and development of all phyla. However, the specific functions of ABC gene families in insects is unclear. We report a genome-wide identification, phylogenetic, and transcriptional analysis of the ABC genes in the oriental fruit fly, Bactrocera dorsalis (Hendel). We identified a total of 47 ABC genes (BdABCs) from the transcriptomic and genomic databases of B. dorsalis and classified these genes into eight subfamilies (A-H), including 7 ABCAs, 7 ABCBs, 9 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 15 ABCGs, and 3 ABCHs. Comparative phylogenetic analysis of the ABCs suggests an orthologous relationship between B. dorsalis and other insect species in which these genes have been related to pesticide resistance and essential biological processes. Comparison of transcriptome and relative expression patterns of BdABCs indicated diverse multifunctions within different B. dorsalis tissues. The expression of 4, 10, and 14 BdABCs from 18 BdABCs was significantly upregulated after exposure to LD50s of malathion, avermectin, and beta-cypermethrin, respectively. The maximum expression level of most BdABCs (including BdABCFs, BdABCGs, and BdABCHs) occurred at 48h post exposures, whereas BdABCEs peaked at 24h after treatment. Furthermore, RNA interference-mediated suppression of BdABCB7 resulted in increased toxicity of malathion against B. dorsalis. These data suggest that ABC transporter genes might play key roles in xenobiotic metabolism and biosynthesis in B. dorsalis.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Gene Expression Profiling , Genome, Insect , Insect Proteins/genetics , Phylogeny , Tephritidae/genetics , Animals , Databases, Genetic , Inactivation, Metabolic/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Lethal Dose 50 , Malathion/pharmacology , Pyrethrins/pharmacology , RNA Interference , RNA, Messenger/genetics , Tephritidae/classification , Tephritidae/growth & development , Transcriptome , Up-Regulation/drug effects
13.
Article in English | MEDLINE | ID: mdl-28130169

ABSTRACT

Glutathione S-transferases (GSTs) comprise a diverse family of enzymes found ubiquitously in aerobic organisms and they play important roles in insecticide resistance. In this study, we tested the sensitivities of Liposcelis entomophila, collected from four different field populations, to three insecticides. The results showed that the insects from Tongliang population had a relatively higher tolerance to malathion and propuxor than insects from other field populations. The insecticide sensitivities of different populations detected in psocids may be due to the different control practices. Through sequence mining and phylogenetic analyses, we identified 15 delta class GST genes that contained the conserved motifs of the GSTs. Quantitative real-time PCR (Q-PCR) analysis indicated that the 15 GST genes were expressed at all tested developmental stages, and 12 GST genes had significantly higher expression levels in adulthood than in egg stage. The expression levels of 15 GST genes in different field populations showed that 9 GST genes were significantly higher in Tongliang population compared to other populations. Furthermore, Q-PCR confirmed that the expression of several delta class GSTs was upregulated at different times after malathion, propuxor and deltamethrine exposure with the LC50 concentration of insecticide. Taken together, these findings showed that delta class GST genes have various expression levels in different developmental stages and different field populations, and they were up-regulated in response to insecticide exposure, which suggested that these GSTs may be associated with insecticide metabolism in psocids.


Subject(s)
Gene Expression Regulation, Enzymologic , Glutathione Transferase/genetics , Insect Proteins/genetics , Insecta/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Transferase/metabolism , Insect Proteins/metabolism , Insecta/drug effects , Insecta/metabolism , Insecticide Resistance/genetics , Insecticides/toxicity , Life Cycle Stages/genetics , Phylogeny , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...