Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 13(8): 5294-5305, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37581046

ABSTRACT

Background: Bone density measurement is an important examination for the diagnosis and screening of osteoporosis. The aim of this study was to develop a deep learning (DL) system for automatic measurement of bone mineral density (BMD) for osteoporosis screening using low-dose computed tomography (LDCT) images. Methods: This retrospective study included 500 individuals who underwent LDCT scanning from April 2018 to July 2021. All images were manually annotated by a radiologist for the cancellous bone of target vertebrae and post-processed using quantitative computed tomography (QCT) software to identify osteoporosis. Patients were divided into the training, validation, and testing sets in a ratio of 6:2:2 using a 4-fold cross validation method. A localization model using faster region-based convolutional neural network (R-CNN) was trained to identify and locate the target vertebrae (T12-L2), then a 3-dimensional (3D) AnatomyNet was trained to finely segment the cancellous bone of target vertebrae in the localized image. A 3D DenseNet was applied for calculating BMD. The Dice coefficient was used to evaluate segmentation performance. Linear regression and Bland-Altman (BA) analyses were performed to compare the calculated BMD values using the proposed system with QCT. The diagnostic performance of the system for osteoporosis and osteopenia was evaluated with receiver operating characteristic (ROC) curve analysis. Results: Our segmentation model achieved a mean Dice coefficient of 0.95, with Dice coefficients greater than 0.9 accounting for 96.6%. The correlation coefficient (R2) and mean errors between the proposed system and QCT in the testing set were 0.967 and 2.21 mg/cm3, respectively. The area under the curve (AUC) of the ROC was 0.984 for detecting osteoporosis and 0.993 for distinguishing abnormal BMD (osteopenia and osteoporosis). Conclusions: The fully automated DL-based system is able to perform automatic BMD calculation for opportunistic osteoporosis screening with high accuracy using LDCT scans.

2.
Neurocomputing (Amst) ; 175(Pt A): 40-46, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26858512

ABSTRACT

The uniformly pseudo-projection-anti-monotone (UPPAM) neural network model, which can be considered as the unified continuous-time neural networks (CNNs), includes almost all of the known CNNs individuals. Recently, studies on the critical dynamics behaviors of CNNs have drawn special attentions due to its importance in both theory and applications. In this paper, we will present the analysis of the UPPAM network under the general critical conditions. It is shown that the UPPAM network possesses the global convergence and asymptotical stability under the general critical conditions if the network satisfies one quasi-symmetric requirement on the connective matrices, which is easy to be verified and applied. The general critical dynamics have rarely been studied before, and this work is an attempt to gain an meaningful assurance of general critical convergence and stability of CNNs. Since UPPAM network is the unified model for CNNs, the results obtained here can generalize and extend the existing critical conclusions for CNNs individuals, let alone those non-critical cases. Moreover, the easily verified conditions for general critical convergence and stability can further promote the applications of CNNs.

3.
IEEE Trans Neural Netw ; 20(10): 1529-39, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19695997

ABSTRACT

The backpropogation (BP) neural networks have been widely applied in scientific research and engineering. The success of the application, however, relies upon the convergence of the training procedure involved in the neural network learning. We settle down the convergence analysis issue through proving two fundamental theorems on the convergence of the online BP training procedure. One theorem claims that under mild conditions, the gradient sequence of the error function will converge to zero (the weak convergence), and another theorem concludes the convergence of the weight sequence defined by the procedure to a fixed value at which the error function attains its minimum (the strong convergence). The weak convergence theorem sharpens and generalizes the existing convergence analysis conducted before, while the strong convergence theorem provides new analysis results on convergence of the online BP training procedure. The results obtained reveal that with any analytic sigmoid activation function, the online BP training procedure is always convergent, which then underlies successful application of the BP neural networks.


Subject(s)
Algorithms , Models, Theoretical , Neural Networks, Computer , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...