Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(26): 6009-6017, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37350652

ABSTRACT

Understanding the synergistic effect of Cu-based alloys on the adsorption behavior and selectivity of the CO2 reduction reaction is a crucial step toward directional catalyst design. To this end, density functional theory calculations are employed to investigate Cu-based alloys with diverse doping elements and contents. The results show that the scaling relation still holds in the alloy system, and the strategies to improve the selectivity are put forward based on the adsorption strength of *C and *OCHO intermediates. Further, a model combining the adsorption theory and machine learning algorithm is proposed to capture the relationship between the adsorption energy and the geometric environment. It explains that the difference in d-band centers between the doped metals and Cu affects the variation trend of the adsorption strength and reveals that the intermetallic synergistic effect can be quantified by the bonding distance and d orbital radius on both the adsorbate and metal side.

2.
ACS Nano ; 17(11): 10976-10986, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37222703

ABSTRACT

Photocatalytic CO2 conversion to fuels is a promising strategy for achieving global carbon neutrality. However, infrared light, which accounts for ∼50% of the full sunlight spectrum, has not yet been effectively utilized via photocatalysis. Here, we present an approach to directly power photocatalytic CO2 reduction using near-infrared light. This near-infrared light-responsive process occurs on an in situ generated Co3O4/Cu2O photocatalyst with a nanobranch structure. Photoassisted Kelvin probe force microscopy and relative photocatalytic measurements demonstrate the increase of surface photovoltage after illumination by near-infrared light. We also find that Cu(I) on this in situ generated Co3O4/Cu2O could facilitate the formation of a *CHO intermediate, thus enabling a high-performance CH4 production with a yield of 6.5 µmol/h and a selectivity of 99%. Moreover, we perform a practically oriented direct solar-driven photocatalytic CO2 reduction under concentrated sunlight and achieve a fuel yield of 12.5 µmol/h.

3.
Biomed Pharmacother ; 163: 114855, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37163780

ABSTRACT

Patients after liver transplantation are often impacted by mental and even neuropsychiatric disorders, including depression, sleep disorders, anxiety, and post-traumatic stress disorder. Neuropsychiatric sequelae have an adverse impact on rehabilitation and can even incapacitate people, reducing their quality of life. Despite screening tools and effective treatments, neuropsychiatric sequelae after liver transplantation (NSALT) have not been fully diagnosed and treated. Current research suggests that NSALT may be partly related to intestinal microbial variation, but the detailed mechanism remains unclear. In this review, we describe the clinical and diagnostic features, prevalence, prediction, clinical course and outcome, management, and treatment of NSALT; we also summarize their mechanisms through the microbiota-gut-liver-brain axis. Finally, we propose to improve NSALT on the basis of adjusting the gastrointestinal flora, immune inflammation or vagus nerve (VN), providing a novel strategy for clinical prevention and treatment.


Subject(s)
Gastrointestinal Microbiome , Liver Transplantation , Humans , Gastrointestinal Microbiome/physiology , Brain , Liver Transplantation/adverse effects , Quality of Life , Liver
4.
Front Pediatr ; 11: 1165972, 2023.
Article in English | MEDLINE | ID: mdl-37215606

ABSTRACT

Objectives: Congenital ventricular aneurysms or diverticulum (VA/VD) are rare cardiac anomalies with lack prenatal evaluation data. The present study aimed to provide the prenatal characteristics and outcomes from a tertiary center and the use of new techniques to evaluate the shape and contractility of these fetuses. Methods: Ten fetuses were diagnosed with VA or VD, and 30 control fetuses were enrolled. Fetal echocardiography was performed to make the diagnosis. The prenatal echo characteristics and follow-up data were carefully reviewed. The shape and contractility measurements of the four-chamber view (4CV) and both ventricles were measured and computed using fetal fetal heart quantification (HQ). Results: A total of 10 fetuses were enrolled, including 4 cases of left ventricular diverticulum, 5 cases of left ventricular aneurysm, and 1 case of right ventricular aneurysm (RVA). Four cases chose to terminate the pregnancy. The RVA was associated with a perimembranous ventricular septal defect. Two cases had fetal arrhythmia, and one case had pericardial effusion. After birth, one case underwent surgical resection at five years old. The 4CV global sphericity index (SI) of free-wall located ventricular outpouching (VO) was significantly lower than the apical ones and the control group (p < 0.01). Four of five apical left VOs had significant higher (>95th centile) SI in base segments, and three of four left VOs in the free-wall had significant lower (< 5th centile) SI in the majority of 24 segments. Compared to the control group, the left ventricle (LV) global longitudinal strain, ejection fraction, and fractional area change were significantly decreased (p < 0.01), while the LV cardiac output of the cases was in the normal range. The transverse fraction shortening of the affected segments of ventricles was significantly lower than the other ventricle segments (p < 0.01). Conclusions: Fetal HQ is a promising technique to evaluate the shape and contractility of congenital ventricular aneurysm and diverticulum.

5.
J Phys Chem Lett ; 13(20): 4434-4440, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35549269

ABSTRACT

Electrochemical CO2 reduction technology plays an important role in reducing CO2 into valuable chemical fuels. Therein, Cu-based catalysts show superior performance for producing high-value C2+ products. Here, we illustrate the ascendency of high-index facets of Cu catalysts in producing C2+ products and find that two kinds of sites favor C-C coupling on the surface. One is prone to adsorb the C-C coupling structure by spanning stepped coppers with different coordination numbers. The other is to embed the structure along two columns of Cu with similar characteristics through O and C adsorbed simultaneously. Within all research surfaces, the coupling energy barrier is lowest on the Cu(911) facet, which is consistent with the experiment. The less charged sites promote the stabilization of the CO-CO structure as determined by charge analysis. Furthermore, our results suggest that the high selectivity for C2+ products on a Cu surface could significantly come from the contribution of the high-index facet.

SELECTION OF CITATIONS
SEARCH DETAIL
...