Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
World J Clin Cases ; 12(19): 3961-3970, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994316

ABSTRACT

BACKGROUND: Juvenile hemochromatosis (JH) is an early-onset, rare autosomal recessive disorder of iron overload observed worldwide that leads to damage in multiple organs. Pathogenic mutations in the hemojuvelin (HJV) gene are the major cause of JH. CASE SUMMARY: A 34-year-old male Chinese patient presented with liver fibrosis, diabetes, hypogonadotropic hypogonadism, hypophysis hypothyroidism, and skin hyperpigmentation. Biochemical test revealed a markedly elevated serum ferritin level of 4329 µg/L and a transferrin saturation rate of 95.4%. Targeted exome sequencing and Sanger sequencing revealed that the proband had a novel mutation c.863G>A (p.R288Q) in the HJV gene which was transmitted from his father, and two known mutations, c.18G>C (p.Q6H) and c.962_963delGCinsAA (p.C321*) in cis, which were inherited from his mother. The p.R288W mutation was previously reported to be pathogenic for hemochromatosis, which strongly supported the pathogenicity of p.R288Q reported for the first time in this case. After 72 wk of intensive phlebotomy therapy, the patient achieved a reduction in serum ferritin to 160.5 µg/L. The patient's clinical symptoms demonstrated a notable improvement. CONCLUSION: This study highlights the importance of screening for hemochromatosis in patients with diabetes and hypogonadotropic hypogonadism. It also suggests that long-term active phlebotomy could efficiently improve the prognosis in severe JH.

2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
3.
Adv Sci (Weinh) ; : e2400066, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973154

ABSTRACT

The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.

4.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
5.
Mol Cell Probes ; 76: 101964, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810840

ABSTRACT

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.

6.
Acta Trop ; 255: 107246, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729328

ABSTRACT

Japanese encephalitis (JE) is a mosquito-borne disease with a spatial distribution that is linked to geo-environmental factors. The spatial distribution of JE cases and correlated geo-environmental factors were investigated in two critical counties in southern and northern China. Based on maps, enhanced thematic mapper (ETM) remote sensing datasets from Landsat and spatial datasets of JE cases, spatial distribution and spatial cluster analyses of JE cases at the village scale were performed by using the standard deviational ellipse and Ripleys K-function. Global and regional spatial cluster analyses of JE cases were also performed by using Moran's index. Regression analysis was used to analyze the relationships between geo-environmental characteristics and the risk of JE cases. At the study sites, the JE cases were not spatially clustered at the village or district (global) level, whereas there was a spatial cluster at the district (local) level. Diversity-related features for JE patients at the district and village levels were detected at two sites. In the southern counties, the distance of a village from a road was related to the village-level JE risk (OR: 0.530, 95 CI: 0.297-0.947, P = 0.032), and the number of township-level JE cases was linked to the distance of the district center from the road (R =-0.467, P = 0.025) and road length (R = 0.516, P = 0.012) in the administrative area. In northern China, the modified normalized difference water index (MNDWI) in the 5 km buffer around the village was related to village-level JE risk (OR: 0.702, 95% CI: 0.524-0.940, P = 0.018), and the number of township-level JE cases was related to the MNDWI in the administrative region (R =-0.522, P = 0.038). This study elucidates the spatial distribution patterns of JE cases and risk, as well as correlated geo-environmental features, at various spatial scales. This study will significantly assist the JE control efforts of the local Centers for Disease Control and Prevention (CDC), which is the base-level CDC, particularly concerning the allocation of medicine and medical staff, the development of immunological plans, and the allocation of pesticides and other control measures for the mosquito vectors of JE.


Subject(s)
Encephalitis, Japanese , Spatial Analysis , China/epidemiology , Humans , Encephalitis, Japanese/epidemiology , Cluster Analysis , Female , Male , Child , Adult , Adolescent , Middle Aged , Young Adult , Child, Preschool , Infant , Aged , Environment , Topography, Medical
7.
Nature ; 629(8013): 843-850, 2024 May.
Article in English | MEDLINE | ID: mdl-38658746

ABSTRACT

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.


Subject(s)
Evolution, Molecular , Genes, Plant , Genomics , Magnoliopsida , Phylogeny , Fossils , Genes, Plant/genetics , Magnoliopsida/genetics , Magnoliopsida/classification , Nuclear Proteins/genetics
8.
iScience ; 27(3): 109263, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439957

ABSTRACT

Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.

9.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491323

ABSTRACT

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Subject(s)
Poaceae , Tetraploidy , Poaceae/genetics , Polyploidy , Genomics , Transcriptome/genetics , Genome, Plant/genetics , Evolution, Molecular
10.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Article in English | MEDLINE | ID: mdl-38519631

ABSTRACT

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Subject(s)
Culicidae , Mosquito Vectors , Virome , Animals , Culicidae/virology , China , Mosquito Vectors/virology , Metagenomics , Arboviruses/genetics , Arboviruses/classification , Phylogeny , Biodiversity
11.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504158

ABSTRACT

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Subject(s)
Breast Neoplasms , Carcinoma , Humans , Female , Breast Neoplasms/genetics , Apoptosis , Breast , Cell Proliferation/genetics , Prognosis , Tumor Microenvironment/genetics , Nuclear Pore Complex Proteins/genetics
12.
Cardiovasc Diabetol ; 23(1): 93, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38468331

ABSTRACT

BACKGROUND: Stress hyperglycemia ratio (SHR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are independently associated with increased mortality risk in diabetic patients with coronary artery disease (CAD). However, the role of these biomarkers in patients with diabetes and multivessel disease (MVD) remains unknown. The present study aimed to assess the relative and combined abilities of these biomarkers to predict all-cause mortality in patients with diabetes and MVD. METHODS: This study included 1148 diabetic patients with MVD who underwent coronary angiography at Tianjin Chest Hospital between January 2016 and December 2016. The patients were divided into four groups according to their SHR (SHR-L and SHR-H) and NT-proBNP (NT-proBNP-L and NT-proBNP-H) levels. The primary outcome was all-cause mortality. Multivariate Cox regression analyses were performed to evaluate the association of SHR and NT-proBNP levels with all-cause mortality. RESULTS: During a mean 4.2 year follow-up, 138 patients died. Multivariate analysis showed that SHR and NT-proBNP were strong independent predictors of all-cause mortality in diabetic patients with MVD (SHR: HR hazard ratio [2.171; 95%CI 1.566-3.008; P < 0.001; NT-proBNP: HR: 1.005; 95%CI 1.001-1.009; P = 0.009). Compared to patients in the first (SHR-L and NT-proBNP-L) group, patients in the fourth (SHR-H and NT-proBNP-H) group had the highest mortality risk (HR: 12.244; 95%CI 5.828-25.721; P < 0.001). The areas under the curve were 0.615(SHR) and 0.699(NT-proBNP) for all-cause mortality. Adding either marker to the original models significantly improved the C-statistic and integrated discrimination improvement values (all P < 0.05). Moreover, combining SHR and NT-proBNP levels into the original model provided maximal prognostic information. CONCLUSIONS: SHR and NT-proBNP independently and jointly predicted all-cause mortality in diabetic patients with MVD, suggesting that strategies to improve risk stratification in these patients should incorporate SHR and NT-porBNP into risk algorithms.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Hyperglycemia , Humans , Natriuretic Peptide, Brain , Coronary Artery Disease/diagnostic imaging , Prognosis , Biomarkers , Peptide Fragments , Hyperglycemia/complications , Hyperglycemia/diagnosis
13.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431640

ABSTRACT

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Subject(s)
LIM Domain Proteins , Muscle Proteins , Muscular Dystrophy, Duchenne , Oculomotor Muscles , Animals , Cytoskeletal Proteins/metabolism , Dystrophin/genetics , Ectopic Gene Expression , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oculomotor Muscles/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Muscle Proteins/metabolism , LIM Domain Proteins/metabolism
14.
BMC Cancer ; 24(1): 253, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395798

ABSTRACT

BACKGROUND: Cancer cachexia is associated with impaired functional and nutritional status and worse clinical outcomes. Global Leadership Initiative in Malnutrition (GLIM) consensus recommended the application of GLIM criteria to diagnose malnutrition in patients with cachexia. However, few previous study has applied the GLIM criteria in patients with cancer cachexia. METHODS: From July 2014 to May 2019, patients who were diagnosed with cancer cachexia and underwent radical gastrectomy for gastric cancer were included in this study. Malnutrition was diagnosed using the GLIM criteria. Skeletal muscle index was measured using abdominal computed tomography (CT) images at the third lumbar vertebra (L3) level. Hand-grip strength and 6-meters gait speed were measured before surgery. RESULTS: A total of 356 patients with cancer cachexia were included in the present study, in which 269 (75.56%) were identified as having malnutrition based on the GLIM criteria. GLIM-defined malnutrition alone did not show significant association with short-term postoperative outcomes, including complications, costs or length of postoperative hospital stays. The combination of low hand-grip strength or low gait speed with GLIM-defined malnutrition led to a significant predictive value for these outcomes. Moreover, low hand-grip strength plus GLIM-defined malnutrition was independently associated with postoperative complications (OR 1.912, 95% CI 1.151-3.178, P = 0.012). GLIM-defined malnutrition was an independent predictive factor for worse OS (HR 2.310, 95% CI 1.421-3.754, P = 0.001) and DFS (HR 1.815, 95% CI 1.186-2.779, P = 0.006) after surgery. The addition of low hand-grip strength or low gait speed to GLIM-defined malnutrition did not increase its predictive value for survival. CONCLUSION: GLIM-defined malnutrition predicted worse long-term survival in gastric cancer patients with cachexia. Gait speed and hand-grip strength added prognostic value to GLIM-defined malnutrition for the prediction of short-term postoperative outcomes, which could be incorporated into preoperative assessment protocols in patients with cancer cachexia.


Subject(s)
Malnutrition , Stomach Neoplasms , Humans , Cachexia/diagnosis , Cachexia/etiology , Prognosis , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Leadership , Walking Speed , Malnutrition/complications , Malnutrition/diagnosis , Nutritional Status , Hand Strength , Nutrition Assessment
15.
World J Psychiatry ; 14(1): 36-43, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38327883

ABSTRACT

BACKGROUND: Gender consciousness directly affects the development of gender identity, which is a continuous and lifelong process. Meanwhile, hospitalization is a part of many children's lives and has an impact on their gender development. AIM: To investigate the current situation of gender identity in lower primary school children by conducting a survey of 202 hospitalized children in the lower grades and to provide a theoretical basis and foundation for the cultivation of gender identity and medical treatment of children based on the results. This study aims to inspire clinical medical staff to scientifically and reasonably arrange hospital wards for lower primary school children and pay attention to gender protection during the medical treatment process and to help children shape a unified and clear gender identity, which will enable them to better integrate into society and promote their personality development. METHODS: The gender consciousness scale for elementary and middle school students was used for the survey. RESULTS: Gender identity was already present in lower primary school children. The children's gender roles and gender equality consciousness were strong, exceeding the critical value, but their gender characteristics, gender identity, and gender ideal consciousness were weak. Children aged 6 had the weakest gender identity, and girls had significantly stronger gender identity than boys. CONCLUSION: Gender identity is already present in lower primary school children, providing a basis and inspiration for the cultivation of gender identity and medical treatment of lower primary school children. Clinical medical staff should be aware of and understand these results and should scientifically and reasonably arrange hospital wards for lower primary school children.

16.
J Clin Transl Sci ; 8(1): e13, 2024.
Article in English | MEDLINE | ID: mdl-38384898

ABSTRACT

Objectives: To compare how clinical researchers generate data-driven hypotheses with a visual interactive analytic tool (VIADS, a visual interactive analysis tool for filtering and summarizing large datasets coded with hierarchical terminologies) or other tools. Methods: We recruited clinical researchers and separated them into "experienced" and "inexperienced" groups. Participants were randomly assigned to a VIADS or control group within the groups. Each participant conducted a remote 2-hour study session for hypothesis generation with the same study facilitator on the same datasets by following a think-aloud protocol. Screen activities and audio were recorded, transcribed, coded, and analyzed. Hypotheses were evaluated by seven experts on their validity, significance, and feasibility. We conducted multilevel random effect modeling for statistical tests. Results: Eighteen participants generated 227 hypotheses, of which 147 (65%) were valid. The VIADS and control groups generated a similar number of hypotheses. The VIADS group took a significantly shorter time to generate one hypothesis (e.g., among inexperienced clinical researchers, 258 s versus 379 s, p = 0.046, power = 0.437, ICC = 0.15). The VIADS group received significantly lower ratings than the control group on feasibility and the combination rating of validity, significance, and feasibility. Conclusion: The role of VIADS in hypothesis generation seems inconclusive. The VIADS group took a significantly shorter time to generate each hypothesis. However, the combined validity, significance, and feasibility ratings of their hypotheses were significantly lower. Further characterization of hypotheses, including specifics on how they might be improved, could guide future tool development.

17.
Invest Ophthalmol Vis Sci ; 65(2): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334702

ABSTRACT

Purpose: The cytoskeleton of the extraocular muscles (EOMs) is significantly different from that of other muscles. We aimed to investigate the role of obscurin, a fundamental cytoskeletal protein, in the EOMs. Methods: The distribution of obscurin in human and zebrafish EOMs was compared using immunohistochemistry. The two obscurin genes in zebrafish, obscna and obscnb, were knocked out using CRISPR/Cas9, and the EOMs were investigated using immunohistochemistry, qPCR, and in situ hybridization. The optokinetic reflex (OKR) in five-day-old larvae and adult obscna-/-;obscnb-/- and sibling control zebrafish was analyzed. Swimming distance was recorded at the same age. Results: The obscurin distribution pattern was similar in human and zebrafish EOMs. The proportion of slow and fast myofibers was reduced in obscna-/-;obscnb-/- zebrafish EOMs but not in trunk muscle, whereas the number of myofibers containing cardiac myosin myh7 was significantly increased in EOMs of obscurin double mutants. Loss of obscurin resulted in less OKRs in zebrafish larvae but not in adult zebrafish. Conclusions: Obscurin expression is conserved in normal human and zebrafish EOMs. Loss of obscurin induces a myofiber type shift in the EOMs, with upregulation of cardiac myosin heavy chain, myh7, showing an adaptation strategy in EOMs. Our model will facilitate further studies in conditions related to obscurin.


Subject(s)
Oculomotor Muscles , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors , Zebrafish , Animals , Humans , Immunohistochemistry , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Oculomotor Muscles/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Protein Serine-Threonine Kinases/genetics , Zebrafish Proteins/genetics
19.
Cell Commun Signal ; 22(1): 67, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273312

ABSTRACT

Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.


Subject(s)
Metal Nanoparticles , Zebrafish , Animals , Zebrafish/metabolism , Lymphangiogenesis/genetics , Copper/chemistry , Silver/pharmacology , Silver/chemistry , Silver/metabolism , RNA, Messenger/metabolism
20.
Cell Biol Toxicol ; 40(1): 2, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38252267

ABSTRACT

As part of the central nervous system (CNS), the retina senses light and also conducts and processes visual impulses. The damaged development of the retina not only causes visual damage, but also leads to epilepsy, dementia and other brain diseases. Recently, we have reported that copper (Cu) overload induces retinal developmental defects and down-regulates microtubule (MT) genes during zebrafish embryogenesis, but whether the down-regulation of microtubule genes mediates Cu stress induced retinal developmental defects is still unknown. In this study, we found that microtubule gene stmn4 exhibited obviously reduced expression in the retina of Cu overload embryos. Furthermore, stmn4 deficiency (stmn4-/-) resulted in retinal defects similar to those seen in Cu overload embryos, while overexpression of stmn4 effectively rescued retinal defects and cell apoptosis occurred in the Cu overload embryos and larvae. Meanwhile, stmn4 deficient embryos and larvae exhibited reduced mature retinal cells, the down-regulated expression of microtubules and cell cycle-related genes, and the mitotic cell cycle arrests of the retinal cells, which subsequently tended to apoptosis independent on p53. The results of this study demonstrate that Cu stress might lead to retinal developmental defects via down-regulating expression of microtubule gene stmn4, and stmn4 deficiency leads to impaired cell cycle and the accumulation of retinal progenitor cells (RPCs) and their subsequent apoptosis. The study provides a certain referee for copper overload in regulating the retinal development in fish.


Subject(s)
Copper , Retina , Stathmin , Zebrafish , Animals , Apoptosis/genetics , Cell Cycle , Copper/adverse effects , Larva , Retina/pathology , Zebrafish/genetics , Stathmin/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...