Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Luminescence ; 39(1): e4624, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950413

ABSTRACT

Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.


Subject(s)
Indoles , Polycyclic Aromatic Hydrocarbons , Electrons
2.
Sci Adv ; 9(30): eadh8296, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37506207

ABSTRACT

Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.

3.
Methods Mol Biol ; 2406: 131-143, 2022.
Article in English | MEDLINE | ID: mdl-35089554

ABSTRACT

Efficient protein and peptide expression and purification technologies are highly needed in biotechnology, especially in light of the increasing number of proteins and peptides that are being exploited for therapeutic use, which are inherently difficult to produce via biological means. In this chapter, we describe a facile, reliable, and cost-effective peptide production and purification strategy based on short self-assembling peptides (e.g., L6KD (LLLLLLKD)) and a C-terminal cleavage intein (e.g., Mtu ΔI-CM). This cleavable self-aggregating tag (cSAT) scheme depends on the in vivo formation of aggregates of the fusion protein containing the target peptide, which is induced during the expression by the presence of the self-assembling peptide in the construct. After a simple separation of the aggregates by centrifugation, the purified target peptide with authentic N-terminus is released in solution by pH-induced intein self-cleavage. As an example, a yield of about 4.4 µg/mg wet cell pellet was obtained when the cSAT scheme was used for the expression and purification of the therapeutic peptide GLP-1. This strategy provides a viable approach for preparing peptides with authentic N-termini, especially those in the range of 30 ~ 100 amino acids in size that are typically unstable or susceptible to degradation in Escherichia coli.


Subject(s)
Inteins , Peptides , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/chemistry , Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
4.
ACS Appl Mater Interfaces ; 13(39): 46909-46918, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34550667

ABSTRACT

Small-molecule thermally activated delayed fluorescence (TADF) materials have been extensively developed to actualize efficient organic LEDs (OLEDs). However, organic small molecules generally compromise thin film quality and stability due to the tendency of crystallization, aggregation, and phase separation, which hence degrade the efficiency and long-term stability of the OLEDs. Here, for the first time, we exploit the unique molecular configuration of the bimesitylene scaffold to design two highly efficient TADF amorphous molecular materials with excellent thermal and morphological stabilities. The twisted and rigid bimesitylene scaffold thwarts regular molecular packing and crystallization, thereby guaranteeing homogeneous and stable amorphous thin films. Meanwhile, the highly twisted geometry of the bimesitylene scaffold efficiently breaks the molecular conjugation and thus conserves the high energies of the lowest locally excited triplet states (3LE) above the lowest charge transfer states (1CT and 3CT), leading to small singlet-triplet energy splitting and fast reverse intersystem crossing. These TADF emitters exhibit high photoluminescence quantum yields of 0.90 and 0.69 and short TADF lifetimes of 4.94 and 1.44 µs in doped films, based on which the greenish-blue and greenish-yellow OLEDs achieve external quantum efficiencies of 23.2 and 16.2%, respectively, with small efficiency roll-off rates and perfect color stability.

5.
Protein Expr Purif ; 188: 105974, 2021 12.
Article in English | MEDLINE | ID: mdl-34520839

ABSTRACT

Human growth hormone (hGH) plays an important role in growth control, growth promotion, cell development, and regulation of numerous metabolic pathways in the human body and has been approved by the U.S. FDA for the treatment of several human dysfunctions. Over-expression of recombinant hGH (rhGH) affords a misfolded form in cytoplasm of Escherichia coli, and the refolding step required to obtain active rhGH greatly affects its production costs. Herein, the cleavable self-aggregating tag (cSAT) scheme was used for the expression and purification of rhGH in E. coli. Four aggregating tags (L6KD/α3-peptide/EFK8/ELK16) successfully drove rhGH into active protein aggregates. After the Mxe GyrA intein-mediated cleavage, 2.8-21.4 µg rhGH/mg wet cell weight was obtained at laboratory scale, of which the L6KD fusion achieved the highest rhGH yield. The further refined rhGH maintained 92% of the bioactivity compared to commercial rhGH. The self-assembling of the aggregating tag might physically separate the hGH polypeptide chains, which in turn was beneficial to its folding into the active form. This study provided a simple and cost-effective approach for active rhGH production, and suggested an opportunity for improve folding of recombinant proteins in E. coli.


Subject(s)
Gene Expression , Human Growth Hormone/genetics , Inteins/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Chromatography, Affinity , Chromatography, Gel , Cloning, Molecular , DNA Gyrase/genetics , DNA Gyrase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Human Growth Hormone/biosynthesis , Human Growth Hormone/isolation & purification , Humans , Peptides/genetics , Peptides/metabolism , Protein Aggregates , Protein Folding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification
6.
Gene ; 790: 145693, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33961975

ABSTRACT

The CRISPR-Cas12a system has been demonstrated as an attractive tool for bacterial genome engineering. In particular, FnCas12a recognizes protospacer-adjacent motif (PAM) sites with medium or low GC content, which complements the Cas9-based systems. Here we explored Francisella novicida Cas12a (FnCas12a) for genome editing in Pseudomonas aeruginosa. By using a two-plasmid system expressing the constitutive FnCas12a nuclease, the inducible λRed recombinase, a CRISPR RNA (crRNA), we achieved gene deletion, insertion and replacement with high efficiency (in most cases > 75%), including the deletion of large DNA fragments up to 15 kb and the serial deletion of duplicate gene clusters. This work should provide a useful and complementary addition to the genome engineering toolbox for the study of P. aeruginosa biology and physiology.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Gene Editing , Genome, Bacterial , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Plasmids , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism
7.
Biomaterials ; 222: 119397, 2019 11.
Article in English | MEDLINE | ID: mdl-31442884

ABSTRACT

Immune cell therapy presents a paradigm for the treatment of malignant tumors. Human Vγ9Vδ2 T cells, a subset of peripheral γδ T cells, have been shown to have promising anti-tumor activity. However, new methodology on how to achieve a stronger anti-tumor activity of Vγ9Vδ2 T cells is under continuous investigation. In this work, we used selenium nanoparticles (SeNPs) to strengthen the anti-tumor cytotoxicity of Vγ9Vδ2 T cells. We found SeNPs pretreated γδ T cells had significantly stronger cancer killing and tumor growth inhibition efficacy when compared with γδ T cells alone. Simultaneously, SeNPs pretreatment could significantly upregulate the expression of cytotoxicity related molecules including NKG2D, CD16, and IFN-γ, meanwhile, downregulate PD-1 expression of γδ T cells. Importantly, we observed that SeNPs promoted tubulin acetylation modification in γδ T cells through interaction between microtubule network and lysosomes since the latter is the primary resident station of SeNPs shown by confocal visualization. In conclusion, SeNPs could significantly potentiate anti-tumor cytotoxicity of Vγ9Vδ2 T cells, and both cytotoxicity related molecules and tubulin acetylation were involved in fine-tuning γδ T cell toxicity against cancer cells. Our present work demonstrated a new strategy for further enhancing anti-tumor cytotoxicity of human Vγ9Vδ2 T cells by using SeNPs-based nanotechnology, not gene modification, implicating SeNPs-based nanotechnology had a promising clinical perspective in the γδ T cell immunotherapy for malignant tumors.


Subject(s)
Nanoparticles/chemistry , Selenium/chemistry , Tubulin/metabolism , Acetylation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mice , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nanotechnology , Receptors, IgG/metabolism
8.
Front Immunol ; 8: 1409, 2017.
Article in English | MEDLINE | ID: mdl-29163487

ABSTRACT

The flavonoid baicalin has been reported to possess potent anti-inflammatory activities by suppressing inflammatory signaling pathways. However, whether baicalin can suppress the activation of NOD-like receptor (NLR) family, pyrin containing domain 3 (NLRP3) inflammasome in macrophages is largely unknown. Here, we showed that baicalin treatment dose-dependently inhibited adenosine triphosphate (ATP) or nigericin-induced NLRP3 inflammasome activation, as revealed by the decreased release of mature interleukin (IL)-1ß, active caspase-1p10, and high-mobility group box-1 protein from lipopolysaccharide (LPS)-primed bone marrow-derived macrophages. The formation of ASC specks, a critical marker of NLRP3 inflammasome assembly, was robustly inhibited by baicalin in the macrophages upon ATP or nigericin stimulation. All these inhibitory effects of baicalin could be partly reversed by MDL12330A or H89, both of which are inhibitors of the protein kinase A (PKA) signaling pathway. Consistent with this, baicalin strongly enhanced PKA-mediated phosphorylation of NLRP3, which has been suggested to prevent ASC recruitment into the inflammasome. Of note, the PKA inhibitor H89 could block baicalin-induced NLRP3 phosphorylation on PKA-specific sites, further supporting PKA's role in this process. In addition, we showed that when administered pre and post exposure to Escherichia coli infection baicalin treatment significantly improved mouse survival in bacterial sepsis. Baicalin administration also significantly reduced IL-1ß levels in the sera of bacterial infected mice. Altogether, our results revealed that baicalin inhibited NLRP3 inflammasome activation at least partly through augmenting PKA signaling, highlighting its therapeutic potential for the treatment of NLRP3-related inflammatory diseases.

9.
Front Pharmacol ; 8: 975, 2017.
Article in English | MEDLINE | ID: mdl-29375379

ABSTRACT

The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1ß (IL-1ß) release in lipopolysaccharide (LPS)-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1ß has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli. Oral administration of scutellarin significantly improved the survival of mice with bacterial sepsis. In line with this, scutellarin treatment significantly reduced serum IL-1ß levels and attenuated the infiltration of inflammatory cells in the liver of E. coli-infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.

10.
Oncotarget ; 8(1): 95-109, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27980220

ABSTRACT

The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1ß (IL-1ß) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1ß release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1ß levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.


Subject(s)
Adenosine Triphosphate/metabolism , Berberine/pharmacology , Inflammasomes/metabolism , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/physiology , Adenosine Triphosphate/pharmacology , Animals , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Female , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/physiology , Mice , Microbial Viability/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...