Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715092

ABSTRACT

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Subject(s)
Angiostrongylus cantonensis , Brain , Mice, Inbred BALB C , RNA, Long Noncoding , Strongylida Infections , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Angiostrongylus cantonensis/genetics , Strongylida Infections/parasitology , Strongylida Infections/genetics , Brain/parasitology , Brain/metabolism , Brain/pathology , Mice , Larva/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Polymers (Basel) ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732677

ABSTRACT

Wood possesses several advantageous qualities including innocuity, low cost, aesthetic appeal, and excellent biocompatibility, and its naturally abundant functional groups and diverse structural forms facilitate functionalization modification. As the most sustainable bio-based material, the combination of wood with triboelectric nanogenerators (TENGs) stands poised to significantly advance the cause of green sustainable production while mitigating the escalating challenges of energy consumption. However, the inherent weak polarizability of natural wood limits its development for TENGs. Herein, we present the pioneering development of a flexible transparent wood-based triboelectric nanogenerator (TW-TENG) combining excellent triboelectrical properties, optical properties, and wood aesthetics through sodium chlorite delignification and epoxy resin impregnation. Thanks to the strong electron-donating groups in the epoxy resin, the TW-TENG obtained an open-circuit voltage of up to ~127 V, marking a remarkable 530% enhancement compared to the original wood. Furthermore, durability and stability were substantiated through 10,000 working cycles. In addition, the introduction of epoxy resin and lignin removal endowed the TW-TENG with excellent optical characteristics, with optical transmittance of up to 88.8%, while preserving the unique texture and aesthetics of the wood completely. Finally, we show the application prospects of TW-TENGs in the fields of self-power supply, motion sensing, and smart home through the demonstration of a TW-TENG in the charging and discharging of capacitors and the output of electrical signals in different scenarios.

3.
J Mater Chem B ; 11(29): 6952-6960, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37387620

ABSTRACT

Photochromic hydrogels have great potential for inkless printing, smart display devices, anti-counterfeiting and encryption. However, the short information storage time limits their large-scale application. In this study, a sodium alginate/polyacrylamide photochromic hydrogel with ammonium molybdate as the color change factor was prepared. The addition of sodium alginate was beneficial to the improvement of the fracture stress and elongation at break. In particular, when the content of sodium alginate was 3%, the fracture stress increased from 20 kPa without sodium alginate to 62 kPa. Different photochromic effects and information storage times were achieved by regulating the calcium ion and ammonium molybdate concentration. And the hydrogel with an ammonium molybdate immersion concentration of 6% and calcium chloride immersion concentration of 10% can store information for up to 15 h. At the same time, the hydrogels were able to maintain their photochromic properties over five cycles of "information writing - erasure" and achieved "hunnu" encryption. Therefore, the hydrogel shows excellent information controllable erasure properties and encryption functions, indicating its broad application prospects.


Subject(s)
Alginates , Hydrogels , Calcium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...