Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 33(11): 3941-8, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23323429

ABSTRACT

The Backshore Wetland of Expo Garden was the emphasis of the World Expo construction project in Shanghai in 2010, China programming district. We carried out studies on the community structure and spatial-temporal variation of copepod from September 2009 to August 2010. Statistical Product and Service Solutions (SPSS) was used for relevant statistical analysis between physicochemical parameters and copepod standing crop. Canonical correspondence analysis (CCA) was applied to further explore the correlation between copepod species and environmental parameters using CANOCO 4.5. A total of 23 copepod species in 11 genera, 6 families were identified. 5 dominant species of copepod were recorded during the survey period. They were Eucyclops serrulatus, Thermocyclops taihokuensis, Mesocyclops leuckarti, Thermocyclops brevifurcatus and Microcyclops varicans. The annual mean density of copepod was (8.6 +/- 16.6) ind x L(-1) and the biomass was (0.083 6 +/- 0.143 1) mg x L(-1). The standing crop of copepod had its first peak in July, the second in October and the bottom in January. The highest trophic level was measured at Site 1, decreasing along the flowing direction of the water current, and the lowest level was found at Site 10. The Margelf index remained low in winter and spring, but was increased in summer and autumn. The community structure of copepod was analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Water temperature, pH, nitrate nitrogen, nitrite nitrogen, TN, TP and dissolved oxygen were strongly correlated with the copepod community structure.


Subject(s)
Copepoda/classification , Ecosystem , Environment , Wetlands , Animals , China , Cities , Copepoda/growth & development , Population Dynamics , Temperature , Water/chemistry
2.
Ying Yong Sheng Tai Xue Bao ; 23(10): 2863-70, 2012 Oct.
Article in Chinese | MEDLINE | ID: mdl-23359951

ABSTRACT

The Backshore Wetland of Expo Garden, Shanghai was one of the key parts of the World Expo construction project in 2010. From September 2009 to August 2010, a monthly investigation was conducted to understand the spatiotemporal dynamics of cladocera community structure (including species composition and standing crop) and related main affecting factors in the Backshore Wetland. A total of 36 cladocera species in 13 genera of 5 families were identified through the year. There were 12 dominant species, mainly Chydorus sphaericus, C. ovalis, Diaphanosoma leuchtenbergianum, and Sida crystalline. The mean annual abundance and biomass of the cladocera were 5.7 ind x L(-1) and 0.3559 mg x L(-1), respectively, and the annual dynamics of the standing crop showed bimodal, with the main peak in April and July, and the second peak in July and May, respectively. The Shannon index, Pielou index, and Margelf index were high in summer and autumn, but low in winter and spring. The canonical correspondence analysis (CCA) showed that water temperature, pH, dissolved oxygen, and nitrite nitrogen were the main factors affecting the community structure of cladocera in the Backshore Wetland.


Subject(s)
Cladocera/classification , Ecosystem , Environmental Monitoring , Wetlands , Animals , China , Cities , Cladocera/growth & development , Population Dynamics , Temperature , Water/chemistry
3.
J Microbiol Biotechnol ; 20(2): 238-44, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20208425

ABSTRACT

Rhizobia are well-known for their ability to infect and nodulate legume roots, forming a nitrogen-fixing symbiosis of agricultural importance. In addition, recent studies have shown that rhizobia can colonize roots and aerial plant tissues of rice as a model plant of the Graminaceae family. Here we show that rhizobia can invade tobacco, a model plant belonging to the Solanaceae family. Inoculation of seedling roots with five GFP-tagged rhizobial species followed by microscopy and viable plating analyses indicated their colonization of the surface and interior of the whole vegetative plant. Blockage of ascending epiphytic migration by coating the hypocotyls with Vaseline showed that the endophytic rhizobia can exit the leaf interior through stomata and colonize the external phyllosphere habitat. These studies indicate rhizobia can colonize both below and above-ground tissues of tobacco using a dynamic invasion process that involves both epiphytic and endophytic lifestyles.


Subject(s)
Nicotiana/microbiology , Rhizobium/physiology , Plant Leaves/microbiology , Rhizobium/growth & development
4.
Appl Environ Microbiol ; 71(11): 7271-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16269768

ABSTRACT

Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 x 10(10) rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the world's most important cereal crops.


Subject(s)
Oryza/growth & development , Oryza/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Rhizobium/physiology , Colony Count, Microbial , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Rhizobium/genetics , Rhizobium/metabolism , Rhizobium/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...