Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1209389, 2023.
Article in English | MEDLINE | ID: mdl-37608954

ABSTRACT

Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss (p < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota.

2.
Genes (Basel) ; 14(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37510277

ABSTRACT

microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.


Subject(s)
MicroRNAs , Humans , Female , Swine/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/genetics , Mammals/genetics
3.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240155

ABSTRACT

Spermatogenesis is temperature-dependent, and the increase in testicular temperature seriously affects mammalian spermatogenesis and semen quality. In this study, the testicular heat stress model of mice was made with a 43 °C water bath for 25 min, and the effects of heat stress on semen quality and spermatogenesis-related regulators were analyzed. On the 7th day after heat stress, testis weight shrank to 68.45% and sperm density dropped to 33.20%. High-throughput sequencing analysis showed that 98 microRNAs (miRNAs) and 369 mRNAs were down-regulated, while 77 miRNAs and 1424 mRNAs were up-regulated after heat stress. Through gene ontology (GO) analysis of differentially expressed genes and miRNA-mRNA co-expression networks, it was found that heat stress may be involved in the regulation of testicular atrophy and spermatogenesis disorders by affecting cell meiosis process and cell cycle. In addition, through functional enrichment analysis, co-expression regulatory network, correlation analysis and in vitro experiment, it was found that miR-143-3p may be a representative potential key regulatory factor affecting spermatogenesis under heat stress. In summary, our results enrich the understanding of miRNAs in testicular heat stress and provide a reference for the prevention and treatment of heat-stress-induced spermatogenesis disorders.


Subject(s)
MicroRNAs , Testis , Male , Animals , Mice , Testis/metabolism , MicroRNAs/metabolism , Semen Analysis , Semen/metabolism , Spermatogenesis/genetics , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...