Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(22): 16906-16910, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34726390

ABSTRACT

Herein, a new organic-inorganic hybrid cuprous iodide of [(Me)2-DABCO]Cu6I8 was prepared and structurally characterized with a novel three-dimensional (3D) [Cu6I8]2- framework. Significantly, this 3D cuprous iodide displays infrequent broadband red-to-near-infrared light emission (600-1000 nm) stemming from the radiative recombination of self-trapped excitons.

2.
Inorg Chem ; 59(7): 4311-4319, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32202431

ABSTRACT

In the past few decades, organic-inorganic hybrid metal halides acting as single-component white light emission diodes (LEDs) have attracted extensive attentions, but most of the studies concentrate on the low-dimensional lead perovskites. Here, by using the nontoxic silver as optically active metal center, a series of hybrid silver halides based on one-dimensional structures were constructed and realized broadband white light emission. Compounds [H2DABCO][Ag2X4(DABCO)] (X = Br (1), I (2)) feature one-dimensional [Ag2X4(DABCO)]2- structures charged balanced by [H2DABCO]2+ cations. Compound 1 exhibits an efficient broadband white-light emission with photoluminescence quantum efficiency (PLQE) of about 2.1% and excellent photochemical stability, while compound 2 gives a broadband yellow-white emission centered at 556 nm. [HDABCO]3Ag5Cl8 (3) gives a strong broadband yellow emission (585 nm) with high PLQE of 6.7%, which can be easily fabricated as a white light emitting device. Based on the temperature-dependent, particle-size-dependent, and time-resolved PL measurements as well as other detailed studies, the broadband white-light emissions are ascribed to the synergetic effects of the organic and inorganic components. Our work provides a unique structural assembly method to explore lead-free single-component white-light illuminants from molecular level.

3.
Inorg Chem ; 58(15): 10304-10312, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31328509

ABSTRACT

In recent years, although low-dimensional hybrid lead halides have received great attention due to the fascinating photoluminescent (PL) properties, the research is still on the early stage and only limited phases have been explored and characterized. Here, by introducing heterometals as mixed structural compositions and optical activity centers, we prepared a series of low-dimensional hybrid heterometallic halides, namely as, [(Me)-DABCO]2Cu2PbI6, [(Me)2-DABCO]2M5Pb2I13 (M = Cu and Ag) and [(Me)2-DABCO]Ag2PbBr6 (Me = methyl group, DABCO = 1,4-diazabicyclo[2.2.2]octane). These hybrid halides feature a low-dimensional 0D [Cu2PbI6]2- cluster, a 1D [M5Pb2I13]4- chain, and a 2D [Ag2PbBr6]2- layer, respectively, on the basis of corner-, edge- and face-sharing connecting of [MX4] tetrahedrons, [PbX5] quadrangular pyramids, and [PbX6] octahedrons. Under the photoexcitation, these hybrid heterometallic halides exhibit deep-red luminescent emissions from 711 to 801 nm with the largest Stocks shift of 395 nm. The temperature-dependent PL emissions, PL lifetime, and theoretical calculations are also investigated to probe into the intrinsic nature of photoluminescent emissions. This work affords new types of hybrid halides by introducing different metal centers to probe into the structural evolution and photoluminescent properties.

4.
Chem Commun (Camb) ; 55(48): 6874-6877, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31125034

ABSTRACT

Here, we prepared the first series of 3D hybrid iodoplumbates with novel porous frameworks of [Pb8I21]5- directed by transition metal complex (TMC) cationic dyes of [TM(2.2-bipy)3]2+. The microporous materials exhibit outstanding visible light-driven photoelectric properties due to the effective photosensitization of the TMC dyes. The coexistence of stronger face- and weaker corner-shared connecting manners affords the feasibility of tailoring the 3D framework into low-dimensional skeletons, which provide a new structural prototype to modify the semiconducting properties similar to those of classic perovskites.

5.
J Colloid Interface Sci ; 359(1): 257-60, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21489549

ABSTRACT

Fluorine tin oxide (FTO) and multi-walled carbon nanotube (MWCNT) composites synthesized by a sol-gel process followed by a hydrothermal treatment process have been explored as a support for Pt nanoparticles (Pt-FTO/MWCNTs). X-ray diffraction analysis and high resolution transmission electron microscopy show that the Pt and FTO nanoparticles with crystallite size of around 4-8 nm are highly dispersed on the surface of MWCNTs. Pt-FTO/MWCNT catalyst is evaluated in terms of the electrochemical catalytic activity for methanol electrooxidation using cyclic voltammetry, steady state polarization experiments, and electrochemical impedance spectroscopy technique in acidic medium. The Pt-FTO/MWCNT catalyst exhibits a higher intrinsic catalytic activity for methanol electrooxidation with high stability during potential cycling than Pt nanoparticles supported on tin dioxide/multi-walled carbon nanotube composites. The results suggest that FTO/MWCNT composites could be considered as an alternative support for Pt-based electrocatalysts in direct alcohol fuel cells.


Subject(s)
Fluorine/chemistry , Metal Nanoparticles/chemistry , Methanol/chemistry , Nanotubes, Carbon/chemistry , Platinum/chemistry , Tin Compounds/chemistry , Catalysis , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...