Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res ; 26(1): 64, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610016

ABSTRACT

BACKGROUND: This study aimed to explore potential indicators associated with the neoadjuvant efficacy of TCbHP regimen (taxane, carboplatin, trastuzumab, and pertuzumab) in HER2 + breast cancer (BrCa) patients. METHODS: A total of 120 plasma samples from 40 patients with HER2 + BrCa were prospectively collected at three treatment times of neoadjuvant therapy (NAT) with TCbHP regimen. Serum metabolites were analyzed based on LC-MS and GC-MS data. Random forest was used to establish predictive models based on pre-therapeutic differentially expressed metabolites. Time series analysis was used to obtain potential monitors for treatment response. Transcriptome analysis was performed in nine available pre­therapeutic specimens of core needle biopsies. Integrated analyses of metabolomics and transcriptomics were also performed in these nine patients. qRT-PCR was used to detect altered genes in trastuzumab-sensitive and trastuzumab-resistant cell lines. RESULTS: Twenty-one patients achieved pCR, and 19 patients achieved non-pCR. There were significant differences in plasma metabolic profiles before and during treatment. A total of 100 differential metabolites were identified between pCR patients and non-pCR patients at baseline; these metabolites were markedly enriched in 40 metabolic pathways. The area under the curve (AUC) values for discriminating the pCR and non-PCR groups from the NAT of the single potential metabolite [sophorose, N-(2-acetamido) iminodiacetic acid, taurine and 6-hydroxy-2-aminohexanoic acid] or combined panel of these metabolites were greater than 0.910. Eighteen metabolites exhibited potential for monitoring efficacy. Several validated genes might be associated with trastuzumab resistance. Thirty-nine altered pathways were found to be abnormally expressed at both the transcriptional and metabolic levels. CONCLUSION: Serum-metabolomics could be used as a powerful tool for exploring informative biomarkers for predicting or monitoring treatment efficacy. Metabolomics integrated with transcriptomics analysis could assist in obtaining new insights into biochemical pathophysiology and might facilitate the development of new treatment targets for insensitive patients.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Neoadjuvant Therapy , Metabolomics , Trastuzumab , Biomarkers
2.
J Comput Assist Tomogr ; 48(1): 64-71, 2024.
Article in English | MEDLINE | ID: mdl-37558648

ABSTRACT

OBJECTIVE: The study aimed to evaluate the correlation and diagnostic value of liver fat quantification in unenhanced dual-energy CT (DECT) using quantitative magnetic resonance imaging (MRI) mDIXON-Quant sequence as reference standard in patients with breast cancer. METHODS: Patients with breast cancer were prospectively recruited between June 2018 and April 2020. Each patient underwent liver DECT and MRI mDIXON-Quant examination. The DECT-fat volume fraction (FVF) and liver-spleen attenuation differences were compared with the MRI-proton density fat fraction using scatterplots, Bland-Altman plots, and concordance correlation coefficient. Receiver operating characteristic curves were established to determine the diagnostic accuracy of hepatic steatosis by DECT. RESULTS: A total of 216 patients with breast cancer (mean age, 50.08 ± 9.33 years) were evaluated. The DECT-FVF correlated well with MRI-proton density fat fraction ( r2 = 0.902; P < 0.001), which was higher than the difference in liver-spleen attenuation ( r2 = 0.728; P < 0.001). Bland-Altman analysis revealed slight positive bias; the mean difference was 3.986. The DECT-FVF yielded an average concordance correlation coefficient of 0.677, which was higher than the difference of liver-spleen attenuation (-0.544). The DECT-FVF and the difference in liver-spleen attenuation both lead to mild overestimation of hepatic steatosis. The areas under the curve of DECT-FVF (0.956) were higher than the difference in liver-spleen attenuation (0.807) in identifying hepatic steatosis ( P < 0.001). CONCLUSIONS: Dual-energy CT-FVF may serve as a reliable screening and quantitative tool for hepatic steatosis in patients with breast cancer.


Subject(s)
Breast Neoplasms , Fatty Liver , Humans , Adult , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Protons , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods
3.
Article in English | MEDLINE | ID: mdl-36698553

ABSTRACT

Background: Metaplastic breast cancer (MBC) is an extremely rare malignant breast disease that has rarely been reported. The molecular subtype of MBC is mostly triple-negative, with a high recurrence rate and a worse prognosis. Due to its low HR- and HER2-positive rate, reports on endocrine and targeted therapy are very limited. Case report: We report a case of infrequent triple-negative MBC, which, although at an early stage, quickly developed multiple recurrent lesions in the chest wall. The tumor relapsed repeatedly after comprehensive treatment, including surgery, chemotherapy and radiotherapy. However, pathological results after the third surgery suggested that the molecular subtype had changed from triple-negative to HER2-positive. The previous comprehensive treatment had not been able to effectively control the disease, but the patient achieved a long progression-free survival time through chemotherapy and trastuzumab targeted therapy after the subtype change. To date, there has been no recurrence for over eight years. Conclusion: Among repeatedly relapsed MBC patients, further investigation should be taken into consideration. As in the case presented in our study, it is possible that the HER2 status can convert from negative to overexpression. Moreover, for HER2-positive MBC patients, anti-HER2 therapy is recommended. The decision-making process requires multidisciplinary involvement.

4.
Onco Targets Ther ; 12: 5687-5699, 2019.
Article in English | MEDLINE | ID: mdl-31410016

ABSTRACT

Background: Previous research had shown that an imbalance in cell proliferation and apoptosis is a vital mechanism for tumorigenesis and cancer progression that may directly influence biological behaviors of cancer. microRNAs are associated with the occurrence and development of tumors. This study aimed to explore the influence of miR-937 on breast cancer regulation of APAF1 expression. Methods: Cancer Genome Altas microarray analysis (fold change > 2, p<0.05) was used to verify differentially expressed microRNAs and RT-qPCR was used to detect miR-937 mRNA level in breast cancer. Cell viability and proliferation were measured using CCK8 and colony formation assays, respectively, after the miR-937 mimics/inhibitors and their negative control were transfected into MCF7 cells. The variations in cell cycle and apoptosis were examined using flow cytometry. DAVID database was used to perform GO enrichment analysis. We use dual luciferase report system to detect the effect of miR-937 on the transcriptional activity of APAF1. APAF1 protein level was determined by Western blot assay. Results: miR-937 was up-regulated in breast cancer cell lines and high miR-937 expression is associated with a poorer survival rate in cancer patients. miR-937 overexpression promoted the viability, down-regulated the G1 phase ratios and increased the ability of colony formation in breast cancer cells. miR-937 inhibition inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. Our results showed that miR-937 targeted bind to the APAF1-3'UTR. APAF1 overexpression inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. After cells were co-transfection miR-937 mimics and APAF1, cell apoptosis level was increased. Conclusion: APAF1 up-regulation or APAF1 down-regulation in breast cancer may regulate cell proliferation and apoptosis.

5.
Eur J Med Res ; 22(1): 48, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29162156

ABSTRACT

OBJECTIVE: This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). METHODS: A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. RESULTS: The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. CONCLUSIONS: Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Fluorouracil/administration & dosage , Liver Neoplasms/drug therapy , Animals , Female , Hep G2 Cells , Humans , Male , Mice , Mice, Nude , Microbubbles , Nanotechnology/methods , Ultrasonic Waves , Xenograft Model Antitumor Assays
6.
J Virol Methods ; 194(1-2): 277-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24036072

ABSTRACT

The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.


Subject(s)
DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B virus/genetics , Point Mutation , Polymerase Chain Reaction/methods , Virology/methods , Alleles , Costs and Cost Analysis , Mass Screening/methods , Polymerase Chain Reaction/economics , Sensitivity and Specificity , Virology/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...