Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(5): e11314, 2024 May.
Article in English | MEDLINE | ID: mdl-38694755

ABSTRACT

Climate change is predicted to disproportionately impact sub-Saharan Africa, with potential devastating consequences on plant populations. Climate change may, however, impact intraspecific taxa differently. The aim of the study was to determine the current distribution and impact of climate change on three varieties of Vachellia sieberiana, that is, var. sieberiana, var. villosa and var. woodii. Ensemble species distribution models (SDMs) were built in "biomod2" using 66, 45, and 137 occurrence records for var. sieberiana, var. villosa, and var. woodii, respectively. The ensemble SDMs were projected to 2041-2060 and 2081-2100 under three general circulation models (GCMs) and two shared socioeconomic pathways (SSPs). The three GCMs were the Canadian Earth System Model version 5, the Institut Pierre-Simon Laplace Climate Model version 6A Low Resolution, and the Model for Interdisciplinary Research on Climate version 6. The suitable habitat of var. sieberiana predominantly occurs in the Sudanian and Zambezian phytochoria while that of var. villosa largely occurs in the Sudanian phytochorion. The suitable habitat of var. woodii mainly occurs in the Zambezian phyotochorion. There is coexistence of var. villosa and var. sieberiana in the Sudanian phytochorion while var. sieberiana and var. woodii coexist in the Zambezian phytochorion. Under SSP2-4.5 in 2041-2060 and averaged across the three GCMs, the suitable habitat expanded by 33.8% and 119.7% for var. sieberiana and var. villosa, respectively. In contrast, the suitable habitat of var. woodii contracted by -8.4%. Similar trends were observed in 2041-2060 under SSP5-8.5 [var. sieberiana (38.6%), var. villosa (139.0%), and var. woodii (-10.4%)], in 2081-2100 under SSP2-4.5 [var. sieberiana (4.6%), var. villosa (153.4%), and var. woodii (-14.4%)], and in 2081-2100 under SSP5-8.5 [var. sieberiana (49.3%), var. villosa (233.4%), and var. woodii (-30.7%)]. Different responses to climate change call for unique management and conservation decisions for the varieties.

2.
Environ Monit Assess ; 192(6): 372, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32417982

ABSTRACT

It is important to understand how species distributions will shift under climate change. While much focus has been on species tracking temperature changes in the northern hemisphere, changing precipitation patterns in tropical regions have received less attention. The aim of the study was to estimate the current distribution of wet and dry miombo woodlands of sub-Saharan Africa and to predict their distributions under different climate change scenarios. A maximum entropy method (Maxent) was used to estimate the distributions and for projections. Occurrence records of dominant tree species in each woodland were used for modeling, together with altitude, soil characteristics, and climate variables as the environmental variables. Modeling was done under all four representative concentration pathways (RCPs) and three general circulation models. Three dominant tree species were used in models of dry miombo while seven were used for wet miombo. Models estimated dry miombo to cover almost the entire known distribution of miombo woodlands while wet miombo were estimated to predominate in parts of Angola, southern Democratic Republic of Congo, Malawi, Tanzania, Zambia, and Zimbabwe. Future climate scenarios predict a drier climate in sub-Saharan Africa, and as a result, the range of dry miombo will expand. Dry miombo were predicted to expand by up to 17.3% in 2050 and 22.7% in 2070. In contrast, wet miombo were predicted to contract by up to - 28.6% in 2050 and - 41.6% in 2070. A warming climate is conducive for the proliferation of dry miombo tree species but unfavorable for wet miombo tree species.


Subject(s)
Climate Change , Environmental Monitoring , Forests , Africa, Central , Angola , Malawi , South Africa , Tanzania , Zambia , Zimbabwe
3.
Appl Plant Sci ; 4(6)2016 Jun.
Article in English | MEDLINE | ID: mdl-27347453

ABSTRACT

PREMISE OF THE STUDY: Microsatellite loci were developed for Afzelia quanzensis (Fabaceae) as a first step toward investigating genetic diversity and population structure of the species in its native range. METHODS AND RESULTS: Illumina shotgun sequencing was used to generate raw sequence reads, which were searched for potential microsatellite loci. A total of 70 potential microsatellite loci were tested for amplification and polymorphism, and 39 successfully amplified. Of the 39 loci that amplified, 12 were polymorphic while 27 were monomorphic. The 12 polymorphic loci were cross-amplified in A. africana, and eight successfully amplified. CONCLUSIONS: The 12 polymorphic microsatellite loci can be used for genetic studies of A. quanzensis, which can help determine its conservation status. Eight loci can also be used for genotyping in A. africana.

SELECTION OF CITATIONS
SEARCH DETAIL
...