Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-914345

ABSTRACT

Currently, coronavirus disease 2019 (COVID-19) literature has been increasing dramatically, and the increased text amount make it possible to perform large scale text mining and knowledge discovery. Therefore, curation of these texts becomes a crucial issue for Bio-medical Natural Language Processing (BioNLP) community, so as to retrieve the important information about the mechanism of COVID-19. PubAnnotation is an aligned annotation system which provides an efficient platform for biological curators to upload their annotations or merge other external annotations. Inspired by the integration among multiple useful COVID-19 annotations, we merged three annotations resources to LitCovid data set, and constructed a cross-annotated corpus, LitCovid-AGAC. This corpus consists of 12 labels including Mutation, Species, Gene, Disease from PubTator, GO, CHEBI from OGER, Var, MPA, CPA, NegReg, PosReg, Reg from AGAC, upon 50,018 COVID-19 abstracts in LitCovid. Contain sufficient abundant information being possible to unveil the hidden knowledge in the pathological mechanism of COVID-19.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-914341

ABSTRACT

Due to the rapid evolution of high-throughput technologies, a tremendous amount of data is being produced in the biological domain, which poses a challenging task for information extraction and natural language understanding. Biological named entity recognition (NER) and named entity normalisation (NEN) are two common tasks aiming at identifying and linking biologically important entities such as genes or gene products mentioned in the literature to biological databases. In this paper, we present an updated version of OryzaGP, a gene and protein dataset for rice species created to help natural language processing (NLP) tools in processing NER and NEN tasks. To create the dataset, we selected more than 15,000 abstracts associated with articles previously curated for rice genes. We developed four dictionaries of gene and protein names associated with database identifiers. We used these dictionaries to annotate the dataset. We also annotated the dataset using pre-trained NLP models. Finally, we analysed the annotation results and discussed how to improve OryzaGP.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-763806

ABSTRACT

Prediction of the relations among drug and other molecular or social entities is the main knowledge discovery pattern for the purpose of drug-related knowledge discovery. Computational approaches have combined the information from different resources and levels for drug-related knowledge discovery, which provides a sophisticated comprehension of the relationship among drugs, targets, diseases, and targeted genes, at the molecular level, or relationships among drugs, usage, side effect, safety, and user preference, at a social level. In this research, previous work from the BioNLP community and matrix or tensor decomposition was reviewed, compared, and concluded, and eventually, the BioNLP open-shared task was introduced as a promising case study representing this area.


Subject(s)
Comprehension
4.
J Theor Biol ; 332: 211-7, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23524162

ABSTRACT

Protein solubility plays a major role and has strong implication in the proteomics. Predicting the propensity of a protein to be soluble or to form inclusion body is a fundamental and not fairly resolved problem. In order to predict the protein solubility, almost 10,000 protein sequences were downloaded from NCBI. Then the sequences were eliminated for the high homologous similarity by CD-HIT. Thus, there were 5692 sequences remained. Based on protein sequences, amino acid and dipeptide compositions were generally extracted to predict protein solubility. In this study, the entropy in information theory was introduced as another predictive factor in the model. Experiments involving nine different feature vector combinations, including the above-mentioned three kinds of factors, were conducted with support vector machines (SVMs) as prediction engine. Each combination was evaluated by re-substitution test and 10-fold cross-validation test. According to the evaluation results, the accuracies and Matthew's Correlation Coefficient (MCC) values were boosted by the introduction of the entropy. The best combination was the one with amino acid, dipeptide compositions and their entropies. Its accuracy reached 90.34% and Matthew's Correlation Coefficient (MCC) value was 0.7494 in re-substitution test, while 88.12% and 0.7945 respectively for 10-fold cross-validation. In conclusion, the introduction of the entropy significantly improved the performance of the predictive method.


Subject(s)
Databases, Protein , Models, Chemical , Models, Genetic , Proteins , Sequence Analysis, Protein/methods , Solubility , Amino Acid Sequence , Predictive Value of Tests , Proteins/chemistry , Proteins/genetics
5.
J Theor Biol ; 284(1): 16-23, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21703279

ABSTRACT

To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462.


Subject(s)
Amino Acids/analysis , Gram-Negative Bacterial Infections/genetics , Oryza/genetics , Plant Diseases/genetics , Xanthomonas/pathogenicity , Algorithms , Computational Biology/methods , Fractals , Genes, Plant , Gram-Negative Bacterial Infections/microbiology , Immunity, Innate , Nonlinear Dynamics , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics
6.
Protein Pept Lett ; 17(12): 1466-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20937038

ABSTRACT

Protein solubility plays a major role for understanding the crystal growth and crystallization process of protein. How to predict the propensity of a protein to be soluble or to form inclusion body is a long but not fairly resolved problem. After choosing almost 10,000 protein sequences from NCBI database and eliminating the sequences with 90% homologous similarity by CD-HIT, 5692 sequences remained. By using Chou's pseudo amino acid composition features, we predict the soluble protein with the three methods: support vector machine (SVM), back propagation neural network (BP Neural Network) and hybrid method based on SVM and BP Neural Network, respectively. Each method is evaluated by re-substitution test and 10-fold cross-validation test. In the re-substitution test, the BP Neural Network performs with the best results, in which the accuracy achieves 0.9288 and Matthews Correlation Coefficient (MCC) achieves 0.8513. Meanwhile, the other two methods are better than BP Neural Network in 10-fold cross-validation test. The hybrid method based on SVM and BP Neural Network is the best. The average accuracy is 0.8678 and average MCC is 0.7233. Although all of the three methods achieve considerable evaluations, the hybrid method is deemed to be the best, according to the performance comparison.


Subject(s)
Bacterial Proteins/chemistry , Algorithms , Artificial Intelligence , Neural Networks, Computer , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...