Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1298516, 2024.
Article in English | MEDLINE | ID: mdl-38919538

ABSTRACT

Objective: To develop a semi-automatic model integrating radiomics, deep learning, and clinical features for Bone Metastasis (BM) prediction in prostate cancer (PCa) patients using Biparametric MRI (bpMRI) images. Methods: A retrospective study included 414 PCa patients (BM, n=136; NO-BM, n=278) from two institutions (Center 1, n=318; Center 2, n=96) between January 2016 and December 2022. MRI scans were confirmed with BM status via PET-CT or ECT pre-treatment. Tumor areas on bpMRI images were delineated as tumor's region of interest (ROI) using auto-delineation tumor models, evaluated with Dice similarity coefficient (DSC). Samples were auto-sketched, refined, and used to train the ResNet BM prediction model. Clinical, radiomics, and deep learning data were synthesized into the ResNet-C model, evaluated using receiver operating characteristic (ROC). Results: The auto-segmentation model achieved a DSC of 0.607. Clinical BM prediction's internal validation had an accuracy (ACC) of 0.650 and area under the curve (AUC) of 0.713; external cohort had an ACC of 0.668 and AUC of 0.757. The deep learning model yielded an ACC of 0.875 and AUC of 0.907 for the internal, and ACC of 0.833 and AUC of 0.862 for the external cohort. The Radiomics model registered an ACC of 0.819 and AUC of 0.852 internally, and ACC of 0.885 and AUC of 0.903 externally. ResNet-C demonstrated the highest ACC of 0.902 and AUC of 0.934 for the internal, and ACC of 0.885 and AUC of 0.903 for the external cohort. Conclusion: The ResNet-C model, utilizing bpMRI scanning strategy, accurately assesses bone metastasis (BM) status in newly diagnosed prostate cancer (PCa) patients, facilitating precise treatment planning and improving patient prognoses.

2.
Magn Reson Imaging ; 107: 15-23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181835

ABSTRACT

OBJECTIVES: To develop and evaluate a machine learning radiomics model based on biparametric magnetic resonance imaging MRI (bpMRI) to predict bone metastasis (BM) status in newly diagnosed prostate cancer (PCa) patients. METHODS: We retrospectively analyzed bpMRI scans of PCa patients from multiple centers between January 2016 and October 2021. 348 PCa patients were recruited from two institutions for this study. The first institution contributed 284 patients, stratified and randomly divided into training and internal validation cohorts at a 7:3 ratio. The remaining 64 patients were sourced from the second institution and comprised the external validation cohort. Radiomics features were extracted from axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) tumor regions. We developed the radiomics prediction model for BM in the training cohort and validated it in the internal and external validation cohorts. As a benchmark, we trained the logistic regression model with lasso feature reduction (LFR-LRM) in the training cohort and further compared it with Naive Bayes, eXtreme Gradient Boosting (XGboost), Random Forest (RF), GBDT, SVM, Adaboost, and KNN algorithms and validated in both the internal and external cohorts. The performance of several predictive models was assessed by receiver operating characteristic (ROC). RESULTS: The LFR-LRM model achieved an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI: 0.822-0.974) and an accuracy of 0.828 (95% CI: 0.713-0.911). The AUC and accuracy in external validation were 0.866 (95% CI: 0.784-0.948) and 0.769 (95% CI: 0.648-0.864), respectively. The RF and XGBoost models outperformed the LFR-LRM, with AUCs of 0.907 (95% CI: 0.863-0.949) and 0.928 (95% CI: 0.882-0.974) and accuracies of 0.831 (95% CI: 0.727-0.907) and 0.884 (95% CI: 0.792-0.946). External validation for these models yielded AUCs and accuracies of 0.911 (95% CI: 0.861-0.966), 0.921 (95% CI: 0.889-0.953), and 0.846 (95% CI: 0.735-0.923) and 0.876 (95% CI: 0.771-0.945), respectively. CONCLUSIONS: The XGboost machine learning model is more accurate than LFR-LRM for predicting BM in patients with newly confirmed PCa.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Bayes Theorem , Radiomics , Retrospective Studies , Prostatic Neoplasms/diagnostic imaging , Bone Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...