Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol Biochem ; 127: 414-424, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680705

ABSTRACT

Natural rubber (cis-1, 4-polyisoprene) is being produced from bark laticifer cells of Hevea brasiliensis and the popular high latex yielding Indian rubber clones are easily prone to onset of tapping panel dryness syndrome (TPD) which is considered as a physiological syndrome affecting latex production either partially or completely. This report describes an efficient protocol for development of transgenic rubber plants by over-expression of 3-hydroxy 3-methylglutaryl Co-enzyme A reductase 1 (hmgr1) gene which is considered as rate limiting factor for latex biosynthesis via Agrobacterium-mediated transformation. The pBIB plasmid vector containing hmgr1 gene cloned under the control of a super-promoter was used for genetic transformation using embryogenic callus. Putatively transgenic cell lines were obtained on selection medium and produced plantlets with 44% regeneration efficiency. Transgene integration was confirmed by PCR amplification of 1.8 kb hmgr1 and 0.6 kb hpt genes from all putatively transformed callus lines as well as transgenic plants. Southern blot analysis showed the stable integration and presence of transgene in the transgenic plants. Over expression of hmgr1 transgene was determined by Northern blot hybridization, semi-quantitative PCR and real-time PCR (qRT-PCR) analysis. Accumulation of hmgr1 mRNA transcripts was more abundant in transgenic plants than control. Increased level of photosynthetic pigments, protein contents and HMGR enzyme activity was also noticed in transgenic plants over control. Interestingly, the latex yield was significantly enhanced in all transgenic plants compared to the control. The qRT-PCR results exhibit that the hmgr1 mRNA transcript levels was 160-fold more abundance in transgenic plants over untransformed control. These results altogether suggest that there is a positive correlation between latex yield and accumulation of mRNA transcripts level as well as HMGR enzyme activity in transgenic rubber plants. It is presumed that there is a possibility for enhanced level of latex biosynthesis in transgenic plants as the level of mRNA transcripts and HMGR enzyme activity is directly correlated with latex yield in rubber tree. Further, the present results clearly suggest that the quantification of HMGR enzyme activity in young seedlings will be highly beneficial for early selection of high latex yielding plants in rubber breeding programs.


Subject(s)
Hevea , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Latex/biosynthesis , Plant Proteins , Plants, Genetically Modified , Hevea/genetics , Hevea/metabolism , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/biosynthesis , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL