Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745965

ABSTRACT

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

2.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Article in English | MEDLINE | ID: mdl-38193234

ABSTRACT

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Subject(s)
Cyclopentanes , Oryza , Oxylipins , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant/genetics
3.
Hepatol Int ; 18(1): 4-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864725

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Treatment Outcome , Hepatic Artery/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Fluorouracil/therapeutic use , Infusions, Intra-Arterial
4.
Bioorg Chem ; 143: 107022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142558

ABSTRACT

Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.


Subject(s)
Antifibrotic Agents , Thiosemicarbazones , Humans , Thiosemicarbazones/metabolism , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/metabolism , Thiourea/metabolism , Carbon Tetrachloride
5.
Eur J Pharmacol ; 966: 176270, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38096970

ABSTRACT

AIM: Liver fibrosis remains a great challenge in the world. Spinosin (SPI), a natural flavonoid-C-glycoside, possesses various pharmacological activities including anti-inflammatory and anti-myocardial fibrosis effects. In this study, we investigate whether SPI can be a potential lead for the treatment of liver fibrosis and explore whether the orphan nuclear receptor Nur77, a negative regulator of liver fibrosis development, plays a critical role in SPI's action. METHODS: A dual luciferase reporter system of α-SMA was established to evaluate the effect of SPI on hepatic stellate cell (HSC) activation in LX2 and HSC-T6 cells. A mouse model of CCl4-induced liver fibrosis was used to test the efficacy of SPI against liver fibrosis. The expression levels of Nur77, inflammatory cytokines and collagen were determined by Western blotting and qPCR. Potential kinase pathways involved were also analyzed. The affinity of Nur77 with SPI was documented by fluorescence titration. RESULTS: SPI can strongly suppress TGF-ß1-mediated activation of both LX2 and HSC-T6 cells in a dose-dependent manner. SPI increases the expression of Nur77 and reduces TGF-ß1-mediated phosphorylation levels of ASK1 and p38 MAPK, which can be reversed by knocking out of Nur77. SPI strongly inhibits collagen deposition (COLA1) and reduces inflammatory cytokines (IL-6 and IL-1ß), which is followed by improved liver function in the CCl4-induced mouse model. SPI can directly bind to R515 and R563 in the Nur77-LBD pocket with a Kd of 2.14 µM. CONCLUSION: Spinosin is the major pharmacological active component of Ziziphus jujuba Mill. var. spinosa which has been frequently prescribed in traditional Chinese medicine. We demonstrate here for the first time that spinosin is a new therapeutic lead for treatment of liver fibrosis by targeting Nur77 and blocking the ASK1/p38 MAPK signaling pathway.


Subject(s)
Hepatic Stellate Cells , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Signal Transduction , Cell Line , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Flavonoids/pharmacology , Cytokines/metabolism , Disease Models, Animal , Collagen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Liver
6.
Bioorg Chem ; 140: 106795, 2023 11.
Article in English | MEDLINE | ID: mdl-37657195

ABSTRACT

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Subject(s)
Anticonvulsants , Liver Cirrhosis , Animals , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Antifibrotic Agents , Autophagy , Hepatic Stellate Cells
7.
Cells ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36497127

ABSTRACT

Hepatocellular carcinoma (HCC) commonly possesses chronical elevation of IRE1α-ASK1 signaling. Orphan nuclear receptor Nur77, a promising therapeutic target in various cancer types, is frequently silenced in HCC. In this study, we show that cryptomeridiol (Bkh126), a naturally occurring sesquiterpenoid derivative isolated from traditional Chinese medicine Magnolia officinalis, has therapeutic efficacy in HCC by aggravating the pre-activated UPR and activating the silenced Nur77. Mechanistically, Nur77 is induced to sense IRE1α-ASK1-JNK signaling and translocate to the mitochondria, which leads to the loss of mitochondrial membrane potential (Δψm). The Bkh126-induced aggravation of ER stress and mitochondrial dysfunction result in increased cytotoxic product of reactive oxygen species (ROS). The in vivo anti-HCC activity of Bkh126 is superior to that of sorafenib, currently used to treat advanced HCC. Our study shows that Bkh126 induces Nur77 to connect ER stress to mitochondria-mediated cell killing. The identification of Nur77 as a molecular target of Bhk126 provides a basis for improving the leads for the further development of anti-HCC drugs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Orphan Nuclear Receptors , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Endoplasmic Reticulum Stress , Endoribonucleases , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Orphan Nuclear Receptors/metabolism , Protein Serine-Threonine Kinases
8.
J Hepatocell Carcinoma ; 9: 141-155, 2022.
Article in English | MEDLINE | ID: mdl-35300206

ABSTRACT

Purpose: Early detection and prognostic prediction of hepatocellular carcinoma (HCC) remain a great challenge. In this study, we explored the role and diagnostic significance of stanniocalcin 2 (STC2), recently identified as a secretory protein, in HCC. Methods: STC2 mRNA and protein in HCC tissues were examined by qRT-PCR and immunohistochemistry. The regulatory role of HCC growth by STC2 was evaluated in vitro and in vivo. Serum STC2 levels were determined in HCC patients and compared to those with liver cirrhosis (LC) and normal controls (NC). The difference and significance of STC2 levels between groups were analyzed by Mann-Whitney U-test. The diagnostic value of serum STC2 in detecting early HCC was assayed with receiver operating characteristics (ROC). The association of STC2 with overall survival (OS) was determined with Kaplan-Meier method. Results: STC2 was elevated in about 77.1% HCC patients and correlated with advanced tumor progression. Overexpression or knockdown of STC2 stimulated or suppressed HCC colony formation and xenograft tumor growth. AKT activation played a critical role in tumor-promoting effect of STC2. The median level of serum STC2 in HCC patients (n = 98, 2086.6 ng/L) was 2.6-fold and 4.2-fold that in LC patients (n = 42, 801.9 ng/L) and NC (n = 26, 496.9 ng/L), respectively. A cut-off value 1493 ng/L for STC2 could distinguish early HCC from LC with a sensitivity of 76.9% and a specificity of 76.2%, both of which were superior to AFP at 20 µg/L (sensitivity 69.2%, specificity 52.4%). STC2 was positive in 77.8% (14/18) AFP-negative patients. High STC2 level was correlated with poor overall and disease specific survival. Conclusion: STC2 is upregulated in both tumor and serum of HCC patients, and its overexpression promotes HCC via AKT pathway. STC2 possesses a diagnostic significance and may serve as an auxiliary biomarker of AFP for detecting early HCC.

10.
Cancers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36612021

ABSTRACT

Hypoxia reprograms cancer stem cells. Nur77, an orphan nuclear receptor, highly expresses and facilitates colorectal cancer (CRC) stemness and metastasis under a hypoxic microenvironment. However, safe and effective small molecules that target Nur77 for CSC depletion remain unexplored. Here, we report our identification of the ginsenoside compound K (CK) as a new ligand of Nur77. CK strongly inhibits hypoxia-induced CRC sphere formation and CSC phenotypes in a Nur77-dependent manner. Hypoxia induces an intriguing Nur77-Akt feed-forward loop, resulting in reinforced PI3K/Akt signaling that is druggable by targeting Nur77. CK directly binds and modulates Nur77 phosphorylation to block the Nur77-Akt activation loop by disassociating Nur77 from the p63-bound Dicer promoter. The transcription of Dicer that is silenced under a hypoxia microenvironment is thus reactivated by CK. Consequently, the expression and processing capability of microRNA let-7i-5p are significantly increased, which targets PIK3CA mRNA for decay. The in vivo results showed that CK suppresses cancer stemness and metastasis without causing significant adverse effects. Given that the majority of FDA-approved and currently clinically tested PI3K/Akt inhibitors are reversible ATP-competitive kinase antagonists, targeting Nur77 for PI3K/Akt inactivation may provide an alternative strategy to overcoming concerns about drug selectivity and safety. The mechanistic target identification provides a basis for exploring CK as a promising nutraceutical against CRC.

11.
Front Pharmacol ; 12: 739658, 2021.
Article in English | MEDLINE | ID: mdl-34539418

ABSTRACT

Mangostin, which has the function of anti-inflammatory, antioxidant, and anticancer, etc, is one of the main active ingredients of the hull of the mangosteen. The main objective of the study was to elucidate its anti-cancer function and possible mechanism. α-Mangostin was separated and structurally confirmed. MTT method was used to check the effect of mangostin on breast cancer cell proliferation. Then the effect of α-Mangostin on the transcriptional activity of RXRα was tested by dual-luciferase reporter gene assay. And Western blot (WB) was used to detect the expression of apoptosis-related proteins or cell cycle-associated proteins after treatment. Also, this study was to observe the effects of α-Mangostin on the invasion of breast cancer cell line MDA-MB-231. α-Mangostin regulates the downstream effectors of the PI3K/AKT signaling pathway by degrading RXRα/tRXRα. α-Mangostin can trigger PARP cleavage and induce apoptosis, which may be related to the induction of upregulated BAX expression and downregulation of BAD and cleaved caspase-3 expression in MDA-MB-231 cells through blockade of AKT signaling. The experiments verify that α-Mangostin have evident inhibition effects of invasion and metastasis of MDA-MB-231 cells. Cyclin D1 was involved in the anticancer effects of α-Mangostin on the cell cycle in MDA-MB-231 cells. α-Mangostin induces apoptosis, suppresses the migration and invasion of breast cancer cells through the PI3K/AKT signaling pathway by targeting RXRα, and cyclin D1 has involved in this process.

12.
Dis Markers ; 2021: 6680883, 2021.
Article in English | MEDLINE | ID: mdl-34211612

ABSTRACT

BACKGROUND: Glioma is the most common primary intracranial tumor and is associated with poor prognosis. Identifying effective biomarkers for glioma is particularly important. MXRA5, a secreted glycoprotein, is involved in cell adhesion and extracellular matrix remodeling and has been reported to be expressed in many cancers. However, the role and mechanism of action of MXRA5 in gliomas remain unclear. This study was aimed at investigating the role of MXRA5 at the transcriptome level and its clinical prognostic value. METHODS: In this study, RNA microarray data of 301 glioma patients from the Chinese Glioma Genome Atlas (CGGA) were collected as a training cohort and RNA-seq data of 702 glioma samples from The Cancer Genome Atlas (TCGA) were used for validation. We analyzed the clinical and molecular characteristics as well as the prognostic value of MXRA5 in glioma. In addition, the expression level of MXRA was evaluated in 28 glioma tissue samples. RESULTS: We found that MXRA5 expression was significantly upregulated in high-grade gliomas and IDH wild-type gliomas compared to controls. Receiver operating characteristic (ROC) analysis showed that MXRA5 is a potential marker of the mesenchymal subtype of glioblastoma multiforme (GBM). We found that MXRA5 expression is highly correlated with immune checkpoint molecule expression levels and tumor-associated macrophage infiltration. High MXRA5 expression could be used as an independent indicator of poor prognosis in glioma patients. CONCLUSION: Our study suggests that MXRA5 expression is associated with the clinicopathologic features and poor prognosis of gliomas. MXRA5 may play an important role in the immunosuppressive microenvironment of glioma. As a secreted glycoprotein, MXRA5 is a potential circulating biomarker for glioma, deserving further investigation.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Gene Expression Profiling/methods , Glioma/pathology , Proteoglycans/genetics , Up-Regulation , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Case-Control Studies , Cell Line, Tumor , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Humans , Male , Neoplasm Grading , Prognosis , Proteoglycans/metabolism , ROC Curve , Sequence Analysis, RNA , Tumor Microenvironment
13.
Plants (Basel) ; 10(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072675

ABSTRACT

The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.

14.
Bioorg Chem ; 113: 105008, 2021 08.
Article in English | MEDLINE | ID: mdl-34089944

ABSTRACT

We previously reported 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole- 2-carbohydrazide derivatives as new Nur77 modulators. In this study, we explored whether the 8-methoxy-2-methylquinoline moiety and bicyclic aromatic rings at the N'-methylene position were critical for their antitumor activity against hepatocellular carcinoma (HCC). For this purpose, a small library of 5-substituted 1H-indole-2-carbohydrazide derivatives was designed and synthesized. We found that the 8-methoxy-2-methylquinoline moiety was a fundamental structure for its biological function, while the introduction of the bicyclic aromatic ring into the N'-methylene greatly improved its anti-tumor effect. We found that the representative compound 10E had a high affinity to Nur77. The KD values were in the low micromolar (2.25-4.10 µM), which were coincident with its IC50 values against the tumor cell lines (IC50 < 3.78 µM). Compound 10E could induce autophagic cell death of liver cancer cells by targeting Nur77 to mitochondria while knocking down Nur77 greatly impaired anti-tumor effect. These findings provide an insight into the structure-activity relation of Quinoline-Indole-Schiff base derivatives and further demonstrate that antitumor agents targeting Nur77 may be considered as a promising strategy for HCC therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Autophagic Cell Death/drug effects , Indoles/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Quinolines/chemistry , Schiff Bases/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , Drug Design , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry , Structure-Activity Relationship
15.
Theranostics ; 11(7): 3376-3391, 2021.
Article in English | MEDLINE | ID: mdl-33537093

ABSTRACT

Background: Colorectal cancer (CRC) and the associated metastatic lesions are reported to be hypoxic. Hypoxia is a common feature in the tumor microenvironment and a potent stimulant of CRC. We have identified a regulatory role of Nur77 on Akt activation to enhance ß-catenin signaling essential for CRC progression under hypoxic conditions. Methods: The functional role of Nur77 in hypoxia-induced EMT was examined by scattering assays to monitor the morphologies of CRC cell lines under 1% O2. Sphere formation assays were performed to investigate whether Nur77 induced cancer stem cell-like properties in hypoxic CRC cells. The expression of various epithelial-to-mesenchymal transition (EMT) and stemness markers was analyzed by qPCR and Western blotting. Finally, Nur77 function and signaling in vivo was ascertained in subcutaneous tumor xenograft or liver metastasis model in nude mice using CRC cells stably transfected with appropriate constructs. Results: Herein, we show, for the first time, that Nur77 is a novel regulator of microRNA biogenesis that may underlie its significant tumor-promoting activities in CRC cells under hypoxia. Mechanistically, Nur77 interacted with the tumor suppressor protein p63, leading to the inhibition of p63-dependent transcription of Dicer, an important miRNA processor and subsequent decrease in the biogenesis of let-7i-5p which targeted the 3'UTR of p110α mRNA and regulated its stability. Knockdown of Nur77 or overexpression of let-7i-5p inhibited the tumor metastasis in vivo. Conclusion: Our data uncovered a novel mechanistic link connecting Nur77, Akt, and invasive properties of CRC in the hypoxic microenvironment.


Subject(s)
Adenocarcinoma/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/genetics , DEAD-box RNA Helicases/genetics , Hypoxia/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Proto-Oncogene Proteins c-akt/genetics , Ribonuclease III/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/secondary , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , DEAD-box RNA Helicases/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/metabolism , Hypoxia/mortality , Hypoxia/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/secondary , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribonuclease III/metabolism , Signal Transduction , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Burden , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
16.
Opt Express ; 28(5): 6469-6489, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225894

ABSTRACT

A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the excited QE will not relax completely to its ground state and is partially stabilized in its excited state after a long time. We develop some theoretical methods for investigating this problem and show how to form such a bound state and its effect on the non-Markovian decay dynamics. We put forward an efficient numerical approach for calculating the analytical part of the self-energy for frequency below the lower energy threshold. We also propose an efficient formalism for obtaining the long-time value of the excited-state population without calculating the eigenfrequency of the bound state or performing a time evolution of the system, in which the probability amplitude for the excited state in the steady limit is equal to one minus the integral of the evolution spectrum over the positive frequency range. With the above two quantities obtained, we show that the non-Markovian decay dynamics of an initially excited QE can be efficiently obtained by the method based on the Green's function expression for the evolution operator when a bound state exists. A general criterion for identifying the existence of a bound state is presented. The performances of the above methods are numerically demonstrated for a QE located around a metal nanosphere and in a gap plasmonic nanocavity. Numerical results show that these methods work well and the QE becomes partially stabilized in its excited state at a long time for the transition dipole moment beyond its critical value. In addition, it is also found that this critical value is heavily dependent on the distance between the QE and the metal surface, but nearly independent on the size of the nanosphere or the rod. Our methods can be utilized to understand the suppressed decay dynamics for a QE in an open quantum system and provide a general picture on how to form such a bound state.

17.
Theranostics ; 10(3): 1230-1244, 2020.
Article in English | MEDLINE | ID: mdl-31938062

ABSTRACT

Rationale: Glycogen synthase kinase-3ß (GSK-3ß) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3ß can confer tumor growth. However, the expression and function of GSK-3ß in hepatocellular carcinoma (HCC) remain largely unexplored. This study is aimed at investigating the role and therapeutic target value of GSK-3ß in HCC. Methods: We firstly clarified the expression of GSK-3ß in human HCC samples. Given that deviated retinoid signalling is critical for HCC development, we studied whether GSK-3ß could be involved in the regulation. Since sorafenib is currently used to treat HCC, the involvement of GSK-3ß in sorafenib treatment response was determined. Co-immunoprecipitation, GST pull down, in vitro kinase assay, luciferase reporter and chromatin immunoprecipitation were used to explore the molecular mechanism. The biological readouts were examined with MTT, flow cytometry and animal experiments. Results: We demonstrated that GSK-3ß is highly expressed in HCC and associated with shorter overall survival (OS). Overexpression of GSK-3ß confers HCC cell colony formation and xenograft tumor growth. Tumor-associated GSK-3ß is correlated with reduced expression of retinoic acid receptor-ß (RARß), which is caused by GSK-3ß-mediated phosphorylation and heterodimerization abrogation of retinoid X receptor (RXRα) with RARα on RARß promoter. Overexpression of functional GSK-3ß impairs retinoid response and represses sorafenib anti-HCC effect. Inactivation of GSK-3ß by tideglusib can potentiate 9-cis-RA enhancement of sorafenib sensitivity (tumor inhibition from 48.3% to 93.4%). Efficient induction of RARß by tideglusib/9-cis-RA is required for enhanced therapeutic outcome of sorafenib, which effect is greatly inhibited by knocking down RARß. Conclusions: Our findings demonstrate that GSK-3ß is a disruptor of retinoid signalling and a new resistant factor of sorafenib in HCC. Targeting GSK-3ß may be a promising strategy for HCC treatment in clinic.


Subject(s)
Carcinoma, Hepatocellular , Glycogen Synthase Kinase 3 beta/physiology , Liver Neoplasms, Experimental , Sorafenib , Tretinoin/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Survival/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha/metabolism , Retinoid X Receptor beta/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-793014

ABSTRACT

Objective@#The aim of this study was to update the epidemic situation of dengue fever (DF) and provide new insights for the consideration of disease control in Fujian province, China.@*Methods@#Details about DF cases in Fujian reported during 2004-2017 were collected and analyzed. The envelope (E) genes of isolates of dengue virus (DENV) were sequenced for phylogenetic analysis.@*Results@#The number of imported DF cases had increased dramatically since 2013, and the source regions expanded from Southeast Asia to South Asia, America, Oceania, and Africa, as well as the surrounding provinces. This resulted in local outbreaks and indigenous cases of DF that occurred more frequently, with 10 of 13 local outbreaks and 85.9% (1,252/1,458) of indigenous cases reported in 2013-2017. Compared with only two coastal cities before 2013, four coastal and one inland city in 2013-2017 experienced the local DF outbreaks. The phylogenetic analysis of E genes confirmed that the import of DENV, not only from abroad but also from the surrounding provinces, played an important role in dissemination and local outbreaks of DF in Fujian.@*Conclusions@#The frequent import of DF cases from not only abroad but also the surrounding provinces resulted in increased incidence, frequent local outbreaks, and expansion of distribution in Fujian in recent years. There is a need for urgent measures to improve disease control in this province.

19.
Molecules ; 24(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277214

ABSTRACT

Ginseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus Panax in the family Araliaceae that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects. This review covers their chemical structure and classification, as well as their pharmacological activities, including their regulatory effects on immunomodulation, their anticancer effects, and their functions in the central nervous and cardiovascular systems. The general benefits of ginseng saponins for boosting physical vitality and improving quality of life are also discussed. The review concludes with fruitful directions for future research in the use of ginseng saponins as effective therapeutic agents.


Subject(s)
Panax/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saponins/chemistry , Saponins/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carbohydrates/chemistry , Central Nervous System/drug effects , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Molecular Structure , Structure-Activity Relationship
20.
Methods Mol Biol ; 2019: 15-31, 2019.
Article in English | MEDLINE | ID: mdl-31359386

ABSTRACT

Retinoic acid receptors (RARs) are ligand-dependent transcription factors of nuclear hormone receptor superfamily (NR). They are important pharmacological targets and current drug development paradigms are largely based on their nuclear transcription mechanism (genomic action). However, the side effects and limited therapeutic efficacy of retinoid-like drugs with such strategy remain a problem in clinical practice. Increasing evidences have demonstrated that many NRs including RARs can act outside the nucleus in a transcription-independent manner (non-genomic action), which are often implicated in human pathological conditions, suggesting that targeting to the non-genomic signaling of NRs is an alternative method for drug discovery. We recently reported that acacetin could antagonize the non-genomic action of RARγ via tipping the balance of AKT-p53 driven by RARγ from tumor promoting to tumor suppressive effect. This chapter provides methodology for identification of acacetin as a ligand and regulator of non-genomic signaling of RARγ. These laboratory protocols should be helpful for those researchers and beginners who are passionate about identifying chemical leads to probe the non-genomic roles of RARs and other NRs for developing new therapeutic technologies.


Subject(s)
Flavones/pharmacology , Receptors, Retinoic Acid/antagonists & inhibitors , Signal Transduction/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , Retinoic Acid Receptor gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...