Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 105: 86-94, 2017 08.
Article in English | MEDLINE | ID: mdl-28521193

ABSTRACT

On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure.


Subject(s)
Alkanesulfonic Acids/toxicity , Caprylates/toxicity , Fluorocarbons/toxicity , Alkanesulfonic Acids/pharmacokinetics , Animals , Caprylates/pharmacokinetics , Female , Fluorocarbons/pharmacokinetics , Humans , Lactation , Male , Mice , Rats , Reference Standards , Reproducibility of Results , Toxicity Tests
2.
Chemosphere ; 154: 350-357, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27062002

ABSTRACT

Emerging contaminants (ECs) are chemicals of a synthetic origin or deriving from a natural source that has recently been discovered and for which environmental or public health risks are yet to be established. This is due to limited available information on their interaction and toxicological impacts on receptors. Several types of ECs exist such as antibiotics, pesticides, pharmaceuticals, personal care products, effluents, certain naturally occurring contaminants and more recently nanomaterials. ECs may derive from a known source, for example released directly to the aquatic environment from direct discharges such as those from wastewater treatment plants. Although in most instances the direct source cannot be identified, ECs have been detected in virtually every country's natural environment and as a consequence they represent a global problem. There is very limited information on the fate and transport of ECs in the environment and their toxicological impact. This lack of information can be attributed to limited financial resources and the lack of analytical techniques for detecting their effects on ecosystems and human health on their own or as mixture. We do not know how ECs interact with each other or various contaminants. This paper presents an overview of existing knowledge on ECs, their fate and transport and a risk-based analysis for ECs management and complementary strategies.


Subject(s)
Environmental Monitoring/methods , Pesticides/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environment , Humans , Risk Assessment
3.
Chemosphere ; 154: 385-390, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27077534

ABSTRACT

Best practice in regulating contaminants of emerging concern (CEC) must involve the integration of science and policy, be defensible and accepted by diverse stakeholders. Key elements of CEC frameworks include identification and prioritisation of emerging contaminants, evaluation of health and environmental impacts from key matrices such as soil, groundwater, surface waters and sediment, assessments of available data, methods and technologies (and limitations), and mechanisms to take cognisance of diverse interests. This paper discusses one of the few frameworks designed for emerging contaminants, the Minnesota Department of Health (MDH) Drinking Water Contaminants of Emerging Concern (CEC) program. Further review of mechanisms for CECs in other jurisdictions reveals that there is only a small number of regulatory and guidance regimes globally. There is also merit in a formal mechanism for the global exchange of knowledge and outcomes associated with CECs of global interest.


Subject(s)
Drinking Water/analysis , Environmental Monitoring/legislation & jurisprudence , Environmental Monitoring/methods , Groundwater/analysis , Water Pollutants, Chemical/analysis , Humans , Minnesota , Practice Guidelines as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...