Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(15): 14309-14346, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37471703

ABSTRACT

Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.

2.
Small ; 18(3): e2104100, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738722

ABSTRACT

The regulation of perovskite crystallization and nanostructure have revolutionized the development of high-performance perovskite solar cells (PSCs) in recent years. Yet the problem of stably passivating perovskite surface defects remains perplexing. The 1D perovskites possess superior physical properties compared with bulk crystals, such as excellent moisture stability, self-healing property, and surface defects passivation. Here, 4-chlorobenzamidine hydrochloride (CBAH) is developed as spacer to form orientationally crystallized nanorod-like 1D perovskite on the top surface of 3D perovskite for surface passivation of FAPbI3 perovskite. Further structure characterizations indicate the coexistence of 1D-3D hybrid perovskite lattices in nanorod-like perovskite passivation layer, which regulates the crystallization and morphology effectively and assists in promoting charge extraction, and suppressing charge recombination. As a result, the CBAH treated FAPbI3 -based PSCs exhibit a boosted power conversion efficiency of 21.95%. More importantly, the resultant unencapsulated devices display improved thermal, moisture, and illumination stability, and high reproducibility in terms of device performance. These results indicate the potential of organic halide salts for regulation of perovskite crystallization, offering a promising route of utilizing 1D perovskites nanorods in photovoltaic fields.

3.
Small Methods ; 5(12): e2101079, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34928012

ABSTRACT

The ionic nature of organic trihalide perovskite leads to structural irregularity and energy disorder at the perovskite surface, which seriously affects the photovoltaic performance of perovskite solar cells. Here, the origin of the perovskite surface disorder is analyzed, and a facial ion-exchange strategy is designed to regulate the surface chemical environment. By the reconstruction of terminal irregular Pb-I bonds and random cations, the repaired surface is characteristic of the reduced band tail states, consequent to the suppression of the uplift of quasi-Fermi level splitting and photocarrier scattering. The optimized device gets a high open-circuit voltage and operational stability. These findings fully elaborate the underlying mechanism concerning perovskite surface problem, giving guidance on tailoring the energy disorder.

4.
ACS Appl Mater Interfaces ; 12(31): 35043-35048, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32662969

ABSTRACT

The high purity of light harvesting layers is one of the core issues for highly efficient perovskite solar cells. The perovskite precursor solution and the crystallization growth of thin films have been extensively studied in the past few years. Herein, we have unveiled some side reactions that occur during the evaporation of the residual solvent in the spin-coated films at elevated temperature, forming N-methyl formamidium iodide and N,N'-dimethyl formamidium iodide. Such side reactions will consume the precursor materials and then produce a secondary phase in the perovskite films, which is detrimental for the performance improvement. We have also found that a combination of room temperature aging and vacuum treatment of the spin-coated wet film is conducive to eliminate the side reactions and improve the perovskite phase purity, reaching an efficiency of 20.98%.

5.
Phys Chem Chem Phys ; 22(11): 6239-6246, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32129431

ABSTRACT

Extending photoabsorption to the near-infrared region (NIR) of the spectrum remains a major challenge for the enhancement of the photoelectric performance of perovskites. In this work, we propose a model of van der Waals heterostructures formed by CH3NH3PbI3 perovskite films and graphdiyne (GDY) to improve the photocurrent in the NIR. To obtain better insights into the properties of GDY/perovskite heterostructures, we first determine its electronic properties using the first principles calculations. The charge transfer between GDY and perovskites leads to a built-in electrical field that facilitates the separation and the transport of the photogenerated carriers. Then, the non-equilibrium Green's function (NEGF) is used to calculate the photocurrents of perovskite slabs with and without GDY. The photocurrents of GDY/perovskite heterostructures are nearly an order of magnitude larger than that of pristine perovskites in NIR due to the synergistic effect between GDY and perovskites. Furthermore, a polarization-sensitive photocurrent is obtained for a GDY/PbI2 heterostructure.

6.
Adv Mater ; 32(11): e1907604, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022965

ABSTRACT

Morphology tuning of the blend film in organic solar cells (OSCs) is a key approach to improve device efficiencies. Among various strategies, solid additive is proposed as a simple and new way to enable morphology tuning. However, there exist few solid additives reported to meet such expectations. Herein, chlorine-functionalized graphdiyne (GCl) is successfully applied as a multifunctional solid additive to fine-tune the morphology and improve device efficiency as well as reproductivity for the first time. Compared with 15.6% efficiency for control devices, a record high efficiency of 17.3% with the certified one of 17.1% is obtained along with the simultaneous increase of short-circuit current (Jsc ) and fill factor (FF), displaying the state-of-the-art binary organic solar cells at present. The redshift of the film absorption, enhanced crystallinity, prominent phase separation, improved mobility, and decreased charge recombination synergistically account for the increase of Jsc and FF after introducing GCl into the blend film. Moreover, the addition of GCl dramatically reduces batch-to-batch variations benefiting mass production owing to the nonvolatile property of GCl. All these results confirm the efficacy of GCl to enhance device performance, demonstrating a promising application of GCl as a multifunctional solid additive in the field of OSCs.

7.
Chem Commun (Camb) ; 55(90): 13570-13573, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31651916

ABSTRACT

A series of sulfide and sulfone substituted perylene diimides (PDIs) with different LUMO levels covering a range of 0.72 eV were synthesized through simple sulfur redox chemistry. The LUMO level of phenylsulfone substituted PDI reached a record-breaking -4.75 eV. In addition, the maximum emission ranged from 540 to 692 nm.

8.
Adv Mater ; 31(42): e1803202, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31448452

ABSTRACT

Graphdiyne (GDY) has drawn much attention for its 2D chemical structure, extraordinary intrinsic properties, and wide application potential in a variety of research fields. In particular, some structural features and basic physical properties including expanded in-plane pores, regular nanostructuring, and good transporting properties make GDY a promising candidate for an electrode material in energy-storage devices, including batteries and supercapacitors. The chemical structure, synthetic strategy, basic chemical-physical properties of GDY, and related theoretical analysis on its energy-storage mechanism are summarized here. Moreover, through a view of the mutual promotion between the structure modification of GDY and the corresponding electrochemical performance improvement, research progress on the application of GDY for electrochemical energy storage is systematically explored and discussed. Furthermore, the development trends of GDY in energy-storage devices are also comprehensively assessed. GDY-based materials represent a bright future in the field of electrochemical energy storage.

9.
ACS Appl Mater Interfaces ; 11(3): 2626-2631, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-29708327

ABSTRACT

Here we reported the doping of graphdiyne in P3CT-K in MAPbI3 perovskite solar cells as hole-transport materials. The doping could improve the surface wettability of P3CT-K, and the resulting perovskite morphology was improved with homogeneous coverage and reduced grain boundaries. Simultaneously, it increased the hole-extraction mobility and reduced the recombination as well as improved the performance of devices. Therefore, a high efficiency of 19.5% was achieved based on improved short-circuit current and fill factor. In addition, hysteresis of the J- V curve was also obviously reduced. This work paves the way for the development of highly efficient perovskite solar cells.

10.
ACS Appl Mater Interfaces ; 11(3): 2608-2617, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-29546976

ABSTRACT

The qualitative and quantitative nitrogen-doping strategy for carbon materials is reported here. Novel porous nanocarbon networks pyrimidine-graphdiyne (PM-GDY) and pyridine-graphdiyne (PY-GDY) films with large areas were successfully prepared. These films are self-supported, uniform, continuous, flexible, transparent, and quantitively doped with merely pyridine-like nitrogen (N) atoms through the facile chemical synthesis route. Theoretical predictions imply these N doped carbonaceous materials are much favorable for storing lithium (Li)-ions since the pyridinic N can enhance the interrelated binding energy. As predicted, PY-GDY and PM-GDY display excellent electrochemical performance as anode materials of LIBs, such as the superior rate capability, the high capacity of 1168 (1165) mA h g-1 at current density of 100 mA g-1 for PY-GDY (PM-GDY), and the excellent stability of cycling for 1500 (4000) cycles at 5000 mA g-1 for PY-GDY (PM-GDY).

12.
Nano Lett ; 18(11): 6941-6947, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30347982

ABSTRACT

This work demonstrates a novel photovoltaic application in which graphdiyne (GD) can be employed as a host material in a perovskite active layer for the first time. In the device fabrication, the best molar ratio for active materials is verified as PbI2/MAI/GD being 1:1:0.25, yielding a peak power-conversion efficiency of 21.01%. We find that graphdiyne, as the host material, exerts significant influence on the crystallization, film morphology, and a series of optoelectronic properties of the perovskite active layer. A uniform MAPbI3 film with highly crystalline qualities, large domain sizes, and few grain boundaries was realized with the introduction of graphdiyne. Moreover, the current-voltage hysteresis was negligible, and device stability was significantly improved as well. The results indicate that graphdiyne as the host active material presents great potential for the enhancement of the performance of perovskite solar cells.

13.
J Am Chem Soc ; 140(31): 10016-10024, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30008216

ABSTRACT

Highly conjugated three-dimensional covalent organic frameworks (3D COFs) were constructed based on spirobifluorene cores linked via imine bonds (SP-3D-COFs) with novel interlacing conjugation systems. The crystalline structures were confirmed by powder X-ray diffraction and detailed structural simulation. A 6- or 7-fold interpenetration was formed depending on the structure of the linking units. The obtained SP-3D-COFs showed permanent porosity and high thermal stability. In application for solar cells, simple bulk doping of SP-3D-COFs to the perovskite solar cells (PSCs) substantially improved the average power conversion efficiency by 15.9% for SP-3D-COF 1 and 18.0% for SP-3D-COF 2 as compared to the reference undoped PSC, while offering excellent leakage prevention in the meantime. By aid of both experimental and computational studies, a possible photoresponsive perovskite-SP-3D-COFs interaction mechanism was proposed to explain the improvement of PSC performance after SP-3D-COFs doping.

14.
Inorg Chem ; 57(14): 8375-8381, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29952566

ABSTRACT

Ternary CuZnS nanocrystals (NCs) are synthesized via a facile, scalable, noninjection method at low temperatures for the first time, wherein sodium ascorbate plays the dual roles of reducing agent and capping ligand in the preparation process. These NCs can be dispersed well in a polar solvent like dimethyl sulfoxide, and the average size is ∼4 nm as measured by transmission electron microscopy. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure of CuZnS NCs displays covellite CuS-like structure and the Zn element partly occupies the Cu position. Also, the crystal structure of CuZnS NCs is completely converted from a covellite CuS structure into a digenite Cu9S5 structure when the NCs are treated above 350 °C. Moreover, CuZnS NCs demonstrate favorable hole transport properties. When it is employed in MAPbI3-based perovskite solar cells as a hole transport layer, a peak power conversion efficiency of 18.3% is achieved. Simultaneously, the devices based on CuZnS exhibit a remarkably reduced J-V hysteresis. The results indicate that CuZnS is a promising hole transport layer for enhancing perovskite solar cell performance and presents great potential for optoelectronic applications, as well.

15.
ACS Appl Mater Interfaces ; 10(23): 20128-20135, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29785850

ABSTRACT

In this work, PC61BM:SnO2 electron transport layers (ETLs) were applied in inverted CH3NH3PbI3 perovskite solar cells, and a high power conversion efficiency of 19.7% could be obtained. It increased by 49.0% in comparison with the device based on PC61BM-only ETL (13.2%). SnO2 nanocrystals with excellent dispersibility were employed here to fill the pinholes and cover the valleys of PC61BM layer, forming smooth and compact PC61BM:SnO2 layers. Simultaneously, the electron traps caused by deep-level native defects of SnO2 were reduced by PC61BM, proved by the space charge limited current analysis. Thus, PC61BM:SnO2 ETLs can inhibit both of the defects in PC61BM and SnO2 layers which contribute to the electron transport improvement and reduce the recombination loss. Moreover, the device stability based on the bilayer was significantly improved in comparison with the PC61BM-only device and the performance of 85% could be maintained after 1 month.

16.
ACS Appl Mater Interfaces ; 10(20): 17401-17408, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29708336

ABSTRACT

The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

17.
J Colloid Interface Sci ; 512: 353-360, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29080531

ABSTRACT

Recently, ZnCdS nanocrystals (NCs) have attracted intense attention because of their specific optical properties and electrical characteristics. In this paper, a green and facile solution method is reported for the preparation of ZnCdS nanocrystals using dimethylsulfoxide as small molecular ligands. The ZnCdS nanocrystals are used as an interface modification material in the photovoltaic devices. It is found that the modification of ZnCdS on TiO2 surface not only suppresses the recombination loss of carriers but also reduces the series resistance of TiO2/active layer. Consequently, both of the short circuit current (Jsc) and the fill factor (FF) of the solar cells were significantly improved. Power conversion efficiency (PCE) of 7.75% based on TiO2/ZnCdS was achieved in contrast to 6.65% of the reference devices based on pure TiO2 film in organic solar cells. Furthermore, the PCE of perovskite solar cells based on TiO2/ZnCdS was observed with 8.3% enhancement compared to that of pure TiO2-based ones.

18.
Angew Chem Int Ed Engl ; 56(36): 10740-10745, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28691245

ABSTRACT

Chlorine-substituted graphdiyne (Cl-GDY) is prepared through a Glaser-Hay coupling reaction on the copper foil. Cl-GDY is endowed with a unique π-conjugated carbon skeleton with expanded pore size in two dimensions, having graphdiyne-like sp- and sp2 - hybridized carbon atoms. As a result, the transfer tunnels for lithium (Li) ions in the perpendicular direction of the molecular plane are enlarged. Moreover, benefiting from the bottom-to-up fabrication procedure of graphdiyne and the strong chemical tailorability of the alkinyl-contained monomer, the amount of substitutional chlorine atoms with appropriate electronegativity and atom size is high and evenly distributed on the as-prepared carbon framework, which will synergistically stabilize the Li intercalated in the Cl-GDY framework, and thus generate more Li storage sites. Profiting from the above unique structure, Cl-GDY shows remarkable electrochemical properties in lithium ion half-cells.

19.
Nano Lett ; 15(4): 2756-62, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25803148

ABSTRACT

Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Here, for the first time, graphdiyne (GD), a novel two dimension carbon material, is doped into PCBM layer of perovskite solar cell with an inverted structure (ITO/PEDOT:PSS/CH3NH3PbI(3-x)Cl(x)/PCBM:GD/C60/Al) to improve the electron transport. The optimized PCE of 14.8% was achieved. Also, an average power conversion efficiency (PCE) of PCBM:GD-based devices was observed with 28.7% enhancement (13.9% vs 10.8%) compared to that of pure PCBM-based ones. According to scanning electron microscopy, conductive atomic force microscopy, space charge limited current, and photoluminescence quenching measurements, the enhanced current density and fill factor of PCBM:GD-based devices were ascribed to the better coverage on the perovskite layer, improved electrical conductivity, strong electron mobility, and efficient charge extraction. Small hysteresis and stable power output under working condition (14.4%) have also been demonstrated for PCBM:GD based devices. The enhanced device performances indicated the improvement of film conductivity and interfacial coverage based on GD doping which brought the high PCE of the devices and the data repeatability. In this work, GD demonstrates its great potential for applications in photovoltaic field owing to its networks with delocalized π-systems and unique conductivity advantage.

20.
ACS Appl Mater Interfaces ; 6(20): 18172-9, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25269149

ABSTRACT

ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...